Solvers for Systems of Nonlinear Algebraic Equations - Their Sensitivity to Starting Vectors

  • Deborah Dent
  • Marcin Paprzycki
  • Anna Kucaba-Pietal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1988)


In this note we compare the sensitivity of six advanced solvers for systems of nonlinear algebraic equations to the choice of starting vectors. We will report on results of our experiments in which, for each test problem, the calculated solution was used as the center from which we have moved away in various directions and observed the behavior of each solver attempting to find the solution. We are particularly interested in determining the best global starting vectors. Experimental results are presented and discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allgowerr, E. and George, K.: Numerical Continuation Methods: An Introduction, Springer-Verlag, Berlin (1990) Google Scholar
  2. 2.
    Brown, K. M.: A quadratically convergent Newton-like method based upon Gaussian elimination, SIAM Journal on Numerical Analysis, 6 (1969) 560–569 CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bouaricha, A., Schnabel, R.: Algorithm 768: TENSOLVE: A Software Package For Solving Systems Of Nonlinear Equations And Nonlinear Least-Squares Problems Using Tensor Methods. ACM Trans. Math. Software, 23, 2 (1997), 174–195 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Burden, R. L., Faries, J. D.: Numerical Analysis. PWS-Kent Publishing Company, Boston, (1993) 575–576 Google Scholar
  5. 5.
    Conn, A. R., Gould, N. I. M and Toint, Ph. L.: LANCELOT: A Fortran package for large-scale nonlinear optimization (Release A), Springer Series in Computiational Mathematics 17, Springer-Vergag, (1992) Google Scholar
  6. 6.
    Dent, D., Paprzycki, M., Kucaba-Pietal, A.: Comparing Solvers for Large Systems of Nonlinear Algebraic Equations. Proceedings of the 16th IMACSWorld Congress, to be published Google Scholar
  7. 7.
    Dent, D., Paprzycki, M., Kucaba-Pietal, A,: Performance of Solvers for Systems of Nonlinear Algebraic Equations. Proceedings of 15th Annual Conf. on Applied Math (1999) 67–77 Google Scholar
  8. 8.
    Dent, D., Paprzycki, M., Kucaba-Pietal, A,: Studying the Numerical Properties of Solvers for Systems of Nonlinear Equations. Proceedings Of The Ninth International Colloquium On Differential Equations (1999), 113–118 Google Scholar
  9. 9.
    Dent, D., Paprzycki, M., Kucaba-Pietal, A,: Testing Convergence of Nonlinear System Solvers. Proceedings of the First Southern Symposium on Computing, (1998) Google Scholar
  10. 10.
    Fong, K. W., Jefferson, T. H., Suyehiro, T., Walton, L.: Guide to the SLATEC Common Mathematical Library, Argonne, Ill., (1990) Google Scholar
  11. 11.
    Kucaba-Pietal, A., Laudanski, L.:Modeling Stationary Gaussian Loads. Scientific Papers of Silesian Technical University, Mechanics, 121 (1995) 173–181 Google Scholar
  12. 12.
    Laudanski, L.: Designing Random Vibration Tests. Int. J. Non-Linear Mechanics, 31, 5 (1996) 563–572 CrossRefGoogle Scholar
  13. 13.
    More, J. J., Garbow, B. S., Hillstrom, K. E.: User Guide for MINPACK-1, Argonne National Laboratory Report ANL-80-74, Argonne, Ill., (1980) Google Scholar
  14. 14.
    More, J. J., Sorensen, D. C., Hillstrom, K. E., Garbow, B. S.: The MINPACK Project, in Sources and Development of Mathematical Software, W. J. Cowell, ed., Prentice-Hall (1984) Google Scholar
  15. 18.
    Rheinboldt, W. C.: Methods for Solving System of Nonlinear Equations. SIAM, Philadelphia (1998) Google Scholar
  16. 19.
    Rheinboldt, W. C., Burkardt, J.: Algorithm 596: A Program For A Locally Parameterized Continuation Process. ACM Trans. Math. Software, 9 (1983) 236–241 CrossRefMathSciNetGoogle Scholar
  17. 20.
    Stoer, J., Bulirsh, R.: Introduction to Numerical Analysis. Springer, New York, (1993) Google Scholar
  18. 21.
    Watson, L. T., Sosonkina, M., Melville, R. C., Morgan, A. P., Walker, H. F.: Algorithm 777:HOMPACK 90: Suite Of Fortran 90 Codes For Globally Convergent Homotopy Algorithms. ACM Trans. Math. Software 23, 4 (1997), 514–549 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 22.
    Weimann, U. N.: A Family of Newton Codes for Systems of Highly Nonlinear Equations. ZIB Technical Report TR-91-10, ZIB, Berlin, Germany (1991) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Deborah Dent
    • 1
  • Marcin Paprzycki
    • 1
  • Anna Kucaba-Pietal
    • 2
  1. 1.School of Mathematical SciencesUniversity of Southern MississippiHattiesburg
  2. 2.Department of Fluid Mechanics and AerodynamicsRzeszow University of TechnologyRzeszowPoland

Personalised recommendations