Skip to main content

Property Testing in Computational Geometry

(Extended Abstract)

  • Conference paper
  • First Online:

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1879)

Abstract

We consider the notion of property testing as applied to computational geometry. We aim at developing efficient algorithms which determine whether a given (geometrical) object has a predetermined property Q or is “far” from any object having the property. We show that many basic geometric properties have very efficient testing algorithms, whose running time is significantly smaller than the object description size.

Keywords

  • Computational Geometry
  • Delaunay Triangulation
  • Geometric Object
  • Query Complexity
  • Property Testing

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Research supported in part by DFG Grant Me872/7-1.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-45253-2_15
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-45253-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. In Proc. 40th IEEE FOCS, pp. 656–666, 1999.

    Google Scholar 

  2. N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable with a constant number of queries. In Proc. 40th IEEE FOCS, pp. 645–655, 1999.

    Google Scholar 

  3. H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig. Algorithmica, 8(5/6):365–389, 1992.

    MathSciNet  Google Scholar 

  4. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.

    MATH  CrossRef  MathSciNet  Google Scholar 

  5. T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Discrete & Computational Geometry, 16:369–387, 1996.

    MATH  CrossRef  MathSciNet  Google Scholar 

  6. M. Dyer and N. Megiddo. Linear programming in low dimensions. In J. E. Goodman and J. O’Rourke, eds., Handbook of Discrete and Computational Geometry, ch. 38, pp. 699–710, CRC Press, Boca Raton, FL, 1997.

    Google Scholar 

  7. F. Ergün, S. Kannan, S. Ravi Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. In Proc. 30th ACM STOC, pp. 259–268, 1998.

    Google Scholar 

  8. F. Ergün, S. Ravi Kumar, and R. Rubinfeld. Approximate checking of polynomials and functional equations. In Proc. 37th IEEE FOCS, pp. 592–601, 1996.

    Google Scholar 

  9. O. Goldreich, S. Goldwasser, E. Lehman, and D. Ron. Testing monotonicity. In Proc. 39th IEEE FOCS, pp. 426–435, 1998.

    Google Scholar 

  10. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

    MATH  CrossRef  MathSciNet  Google Scholar 

  11. O. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proc. 29th ACM STOC, pp. 406–415, 1997.

    Google Scholar 

  12. O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs. Combinatorica, 19(3):335–373, 1999.

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete & Computational Geometry, 2:127–151, 1987.

    MATH  CrossRef  MathSciNet  Google Scholar 

  14. K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S. Schirra, and C. Uhrig. Checking geometric programs or verification of geometric structures. Computational Geometry: Theory and Applications, 12:85–103, 1999.

    MATH  MathSciNet  Google Scholar 

  15. R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

    MATH  CrossRef  MathSciNet  Google Scholar 

  16. R. Rubinfeld. Robust functional equations and their applications to program testing. In Proc. 35th IEEE FOCS, pp. 288–299, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czumaj, A., Sohler, C., Ziegler, M. (2000). Property Testing in Computational Geometry. In: Paterson, M.S. (eds) Algorithms - ESA 2000. ESA 2000. Lecture Notes in Computer Science, vol 1879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45253-2_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45253-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41004-1

  • Online ISBN: 978-3-540-45253-9

  • eBook Packages: Springer Book Archive

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.