Advertisement

Validation of UML Models Thanks to Z and Lustre

  • Sophie Dupuy-Chessa
  • Lydie du Bousquet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2021)

Abstract

Graphical notations such as UML are very popular thanks to their simplicity and their intuitive aspect. Nevertheless their lack of precise semantics limits the possibility of the specification validation. So we propose here to translate some of the UML models into Z and Lustre formal specifications in order to use a theorem prover and a test generator to validate the models. This approach is presented on the “cash-point” service case study proposed during the world Formal Method congress 1999 tool contest.

Keywords

Static Part Theorem Prover Class Diagram Activity Diagram Dynamic Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. Abrial. The B-Book. Cambridge University Press, 1996.Google Scholar
  2. 2.
    D.J. Andrews, H. Bruun, B.S. Hansen, P.G. Larsen, N. Plat, et al. Information Technology — Programming Languages, their environments and system software interfaces-Vienna Development Method-Specification Language Part 1: Base language. ISO, 1995.Google Scholar
  3. 3.
    G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language-User Guide. Addison-Wesley, 1998.Google Scholar
  4. 4.
    P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. LUSTRE,a declarative language for programming synchronous systems. In 14th Symposium on Principles of Programming Languages (POPL 87), Munich, pages 178–188. ACM Press, 1987.Google Scholar
  5. 5.
    J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction to PVS. In Workshop on Industrial-Strength Formal Specification Techniques, Boca Raton, Florida, USA, April 1995.Google Scholar
  6. 6.
    L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Lutess: a specification-driven testing environment for synchronous software. In 21st International Conference on Software Engineering, pages 267–276. ACM Press, May 1999.Google Scholar
  7. 7.
    S. Dupuy. Couplage de notations semi-formelles et formelles pour la spécification des Systémes d’Informations. PhD thesis, Université Joseph Fourier, Grenoble, 2000.Google Scholar
  8. 8.
    S. Dupuy and L. du Bousquet. “Cash-Point service”: a multi-formalism approach for specification. technical report PFL, IMAG-LSR, Grenoble, France, 1999.Google Scholar
  9. 9.
    S. Dupuy, Y. Ledru, and M. Chabre-Peccoud. An Overview of RoZ: a Tool for Integrating UML and Z Specifications. In 12th Conference on Advanced information Systems Engineering-CAiSE’2000, volume 1789 of Lecture Notes in Computer Science, Stockholm, Sweden, 2000. Springer-Verlag.CrossRefGoogle Scholar
  10. 10.
    S. Dupuy, Y. Ledru, and M. Chabre-Peccoud. Vers une intégration utile de notations semiformelles et formelles: une expérience en UMLetZ. L’Objet, numéro thématique Méthodes formelles pour les objets, 6(1), 2000.Google Scholar
  11. 11.
    R. France, J.-M. Bruel, and M. Larrondo-Petri. An Integrated Object-Oriented and Formal Modeling Environment. Journal of Object Oriented Programming, pages 25–34, November/Decembrer 1997.Google Scholar
  12. 12.
    R. France, J.-M. Bruel, M. Larrondo-Petrie, and M. Shroff. Exploring the Semantics of UML type structures with Z. In H. Bowman and J. Derrick, editors, Proc. 2nd IFIP Workshop on Formal Methods for Open Object-Based Distributed Systems (FMOODS), pages 247–260, Canterbury, UK, 1997. Chapman and Hall, London.Google Scholar
  13. 13.
    Hubert Garavel. Open/cæsar: An open software architecture for verification, simulation, and testing. In Proceedings of the First Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS 1384, Springer Verlag, 1998.CrossRefGoogle Scholar
  14. 14.
    N. Halbwachs, F. Lagnier, and C. Ratel. Programming and Verifying Real-Time Systems by Means of the Synchronous Data-Flow Programming Language LUSTRE. IEEE Transactions on Software Engineering, pages 785–793, September 1992.Google Scholar
  15. 15.
    D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8(3):231–274, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    W.-M. Ho, J.-M. Jézéquel, A. LeGuennec, and F. Pennaneac’h. Umlaut: an extensible uml transformation framework. In Proceedings of Automated Software Engineering (ASE), Florida, USA, October 1999. IEEE.Google Scholar
  17. 17.
    IFAD. The Rose-VDM++ Link. http://www.ifad.dk/Products/rose-vdmpp.htm.
  18. 18.
    K Lano and S. Goldsack. Intregrated Formal and Object-Oriented Methods: The VDM++ Approach. In A. Bryant and L. Semmens, editors, Proceedings of Method Integration Workshop, Electronic Workshop in Computing, Leeds, March 1996. Springer-Verlag.Google Scholar
  19. 19.
    Y. Ledru. Identifying pre-conditions with the Z/EVES theorem prover. In Proc. of the 13th Int. Conf. on Automated Software Engineering. IEEE, 1998.Google Scholar
  20. 20.
    E. Meyer and J. Souquières. A systematic approach to transform OMT diagrams to a B specification. In J. Wing, J. Woodcock, and J. Davies, editors, World Congress on Formal Methods in the Development of Computing Systems-FM’99, volume 1708of Lecture Notes in Computer Science, pages 875–896, Toulouse, France, 1999. Springer-Verlag.Google Scholar
  21. 21.
    F. Polack, M. Whiston, and K. Mander. The SAZ Project: Integrating SSADM and Z. In International Symposium Formal Methods Europe, Odense, Danemark, Avril 1993.Google Scholar
  22. 22.
    M. Saaltink. The Z/EVES system. In J. Bowen, M. Hinchey, and D. Till, editors, Proc. 10th Int. Conf. on the Z Formal Method (ZUM), volume 1212 of Lecture Notes in Computer Science, pages 72–88, Reading, UK, april 1997. Springer-Verlag, Berlin.Google Scholar
  23. 23.
    Headway Software. The RoZeLink 1.0. http://www.calgary.shaw.wave.ca/headway/index.htm.
  24. 24.
    J.M. Spivey. The Z notation. Prentice-Hall International, 1992.Google Scholar
  25. 25.
    J. Warmer and A. Kleppe. The Object Constraint Language. Addison-Wesley, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Sophie Dupuy-Chessa
    • 1
  • Lydie du Bousquet
    • 2
  1. 1.CUIUniversity of GenevaGenève 4France
  2. 2.Laboratoire LSR-IMAGSaint Martin d’Hères CedexFrance

Personalised recommendations