Advertisement

Recent Progress in Gel Theory: Ring, Excluded Volume, and Dimension

  • Kazumi Suematsu
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 156)

Abstract

Recent developments in gel research are reviewed with emphasis on the gel point problem. We will describe in due course how the gel point equation can be deduced from first principles. First we review briefly the industrial development of gel science in Japan (Sect. 1) and a central aspect of the classical theory of gelation (Sect. 2). In Sect. 3, we survey the progress on the excluded volume problem from the author’s point of view. In all respects, this theme is, now, too biased to physics and hence beyond the scope of this review; while it is an essential subject to understand the nature of the gel point. Regarding the excluded volume problem, a recent interesting idea is the screening effect. This notion of screening is a different interpretation of the Flory excluded volume theory, but takes us into advanced physics. For instance, the behavior of a branched molecule in the melt becomes comprehensible in a natural fashion. In Sect. 4, we mention cyclization in branching media. Like the problem of volume exclusion, the cyclization problem has not been solved rigorously. The most troublesome aspect with cyclization is that there is no way to enumerate the combinatorial number of branched molecules with rings. On the other hand, the mathematical framework for the general solution has already been given. In this article we will mention the limiting solutions of C→∞ for real systems and of d→∞ for the lattice model. What is important is that these limiting solutions are by no means useless, fictitious entities, but have real meanings. By analogy with the f = 2 case, we can put forward the general relation, [Γ]|≅constant for gelation conditions, where [Γ] represents the total ring concentration; this is the basic premise of the gel point theory developed in Sect. 6. Through these analyses, essential differences between real gelations and the percolation model are brought into sharp relief (Sect. 5). The gel point theory starts from the obvious equality: D c = D(inter)+D(ring), where D c represents the gel point, D(inter) the extent of the intermolecular reaction alone at the gel point and D(ring) the corresponding quantity of cyclization. Then, according to some definitions, fundamental equalities for gel points can be deduced for all the models of real systems and the percolation model. The problem of seeking a gel point for a given system thus reduces to the problem of finding a solution for the corresponding fundamental equality. To solve the equalities, we introduce two main assumptions: (1) random distribution of cyclic bonds, and (2) that the ring distribution functions can be expanded about D c =D co , where D co is the gel point for the ideal tree model. Under these assumptions, we can derive analytical expressions for gel points as functions of γ (= 1/C: the reciprocal of an initial monomer concentration), κ (mole ratio of B-type functional units to A-type functional units), and d (space dimension); that is, D c = G(γ, κ,d). In Sect. 7, the theoretical equations thus obtained are compared with experiments. The result shows that the theory recovers well the points observed by Flory, Weil, and Gordon in all the regimes of κ = 1 ~ 2. The corresponding expression for the percolation model is found to agree well with simulation experiments in high dimensions, but fails in low dimensions. The discrepancy in low dimensions is analyzed in light of the critical dimension concept. One possible explanation is that the above-mentioned assumptions (1) and (2) do not work below. d c = 8.

Keywords

Branching process Gelation Cyclization Excluded volume effects Dimension Concentration invariant High concentration expansion High dimension expansion Gel point Percolation threshold Critical dimension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carothers WH (1931) Chem Rev 8: 353CrossRefGoogle Scholar
  2. 2.
    Flory PJ (1941) J Am Chem Soc 63: 3083CrossRefGoogle Scholar
  3. 3.
    Lee S (1939) Kasen Kouen Yousisyu (Lectures in Chemical Fibers) 4: 51Google Scholar
  4. 4.
    Herrmann WO, Haehnel W (1927) Ber dtsch chem Ges 60: 1658CrossRefGoogle Scholar
  5. 5.
    Staudinger H, Frey K, Starck W (1927) Ber dtsch chem Ges 60:1782CrossRefGoogle Scholar
  6. 6.
    Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca and London; Flory PJ (1969) Statistical Mechanics of Chain Molecules, John Wiley & Sons, Inc, New YorkGoogle Scholar
  7. 7.
    Good IJ (1948) Proc Camb Phil Soc 45: 360; (1955) ibid 51: 240; (1960) ibid 56: 367; (1963) Proc Roy Soc A292: 54Google Scholar
  8. 8.
    Dobson GR, Gordon M (1964) J Chem Phys 41 No. 8: 2389CrossRefGoogle Scholar
  9. 9.
    Dusek K, Gordon M, Ross-Murphy SB (1978) Macromolecules 11: 236CrossRefGoogle Scholar
  10. 10.
    Dusek K (1984) Macromolecules 17: 716CrossRefGoogle Scholar
  11. 11.
    Kajiwara K (1971) Polymer 12: 57CrossRefGoogle Scholar
  12. 12.
    Suematsu K (1992) J Phys Soc Japan 61:1539CrossRefGoogle Scholar
  13. 13.
    Kurata M, Fukastsu M (1964) J Chem Phys 41: 2934CrossRefGoogle Scholar
  14. 14.
    Burchard W (1983) Advances in Polymer Sciences 48:1Google Scholar
  15. 15.
    Reif R (1985) Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New YorkGoogle Scholar
  16. 16.
    Pauling L (1960) The Nature of the Chemical Bonds. Cornell University Press, Ithaca, New YorkGoogle Scholar
  17. 17.
    Atkins PW (1994) Physical Chemistry. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Fisher M (1966) J Chem Phys 44: 616CrossRefGoogle Scholar
  19. 19.
    de Gennes PG (1979) Scaling Concepts in Polymer Physics, Cornell University Press, IthacaGoogle Scholar
  20. 20.
    Zallen R (1983) The Physics of Amorphous Solids. Wiley, New YorkGoogle Scholar
  21. 21.
    Macdonald D, Hunter DL, Kelley K, Jan N (1992) J Phys A 25: 1429CrossRefGoogle Scholar
  22. 22.
    Fixman M (1992) J Phys A 25: 1429CrossRefGoogle Scholar
  23. 23.
    Edwards SF (1965) Proc Phys Soc 85: 613CrossRefGoogle Scholar
  24. 24.
    Domb C, Gillis J, Wilmers G(1965) Proc Phys Soc 85: 625CrossRefGoogle Scholar
  25. 25.
    Domb C (1969) Adv Chem Phys 15: 229CrossRefGoogle Scholar
  26. 26.
    Kirkpatric S (1976) Phys Rev Letters 36: 69CrossRefGoogle Scholar
  27. 27.
    Debye PJW, Hückel E (1923) Physik Z 24:185,305Google Scholar
  28. 28.
    Debye PJW (1924) Physik Z 25:97Google Scholar
  29. 29.
    Chu B (1969) Molecular Forces. Based on the Baker Lectures of Peter J. W. Debye, John Wiley & Sons, New YorkGoogle Scholar
  30. 30.
    Isaacson J, Lubensky TC (1980) J Physique Letters 41: L–469Google Scholar
  31. 31.
    Lubensky TC (1978) Physical Review Letters 41: 829CrossRefGoogle Scholar
  32. 32.
    Lubensky TC, Isaacson J (1979) Physical Review A 20: 2130CrossRefGoogle Scholar
  33. 33.
    Gaunt DS (1980) J Phys A Math. Gen 13: L–97Google Scholar
  34. 34.
    Parisi G, Sourlas N (1981) Phys Rev Letters 46 No 14: 871CrossRefGoogle Scholar
  35. 35.
    Toulouse G (1974) Nuovo Cimento 23:234CrossRefGoogle Scholar
  36. 36.
    Ziman T (1979) Ordering in Strongly Fluctuating Condensed Matter Systems, Riste T (ed), Plenum Press, LondonGoogle Scholar
  37. 37.
    des Cloizeaux J (1980) J Physique 41:223CrossRefGoogle Scholar
  38. 38.
    Bishop M, Saltiel CJ (1988) J Chem Phys 89:1159CrossRefGoogle Scholar
  39. 39.
    Bishop M, Clarke JHR (1989) J Chem Phys 91:3721,6345Google Scholar
  40. 40.
    Pereira GG (1995) Physica A 219:290CrossRefGoogle Scholar
  41. 41.
    Valleau JP (1996) J Chem Phys 104:3071CrossRefGoogle Scholar
  42. 42.
    Suematsu K (1993) J Chem Soc Faraday Trans 89:4181CrossRefGoogle Scholar
  43. 43.
    Macosko CW, Miller DR (1976) Macromolecules 9: 199CrossRefGoogle Scholar
  44. 44.
    Miller DR, Macosko CW (1976) Macromolecules 9: 206CrossRefGoogle Scholar
  45. 45.
    Landin DT, Macosko CW (1988) Macromolecules 21: 646CrossRefGoogle Scholar
  46. 46.
    Dotson NA, Galvan R, Macosko CW (1988) Macromolecules 21: 2560CrossRefGoogle Scholar
  47. 47.
    Suematsu K (1996) J Chem Soc Faraday Trans 92: 2417CrossRefGoogle Scholar
  48. 48.
    Spouge JL (1983) J Stat Phys 31: 363; (1986) 43:143; (1983) Macromolecules 16:121CrossRefGoogle Scholar
  49. 49.
    Suematsu K, Okamoto T (1992) J Stat Phys 66: 661CrossRefGoogle Scholar
  50. 50.
    Suematsu K, Kohno M (1995) J Theor Biol 175: 317CrossRefGoogle Scholar
  51. 51.
    Ziman J (1979) Models of disorder, Cambridge University Press, New YorkGoogle Scholar
  52. 52.
    Klein DJ, Seitz WA (1983) Chemical Applications of Topology and Graph Theory, A Collection of Papers from a Symposium Held at the University of Georgia, Athens, Georgia, USA, 18–22 April, R.B. King (ed), Studies in Physical and Theoretical Chemistry 28:430 Elsevier Science Publishers, Amsterdam.Google Scholar
  53. 53.
    Gaylord RJ, Wellin PR (1997) Computer Simulations with MATHEMATICA, Explorations in Complex Physical and Biological Systems. TELOS, The Electronic Library of Science, Santa Clara, CaliforniaGoogle Scholar
  54. 54.
    Herrmann HJ (1986) Physics Reports 136: 153CrossRefGoogle Scholar
  55. 55.
    Martin JL, Sykes MF, Hioe FT (1967) J Chem Phys 46: 3478CrossRefGoogle Scholar
  56. 56.
    Domb C, Gillis J, Wilmers G (1965) Proc Phys Soc 85:625CrossRefGoogle Scholar
  57. 57.
    Suematsu K, Kohno M (1998) J Stat Phys 93: 293CrossRefGoogle Scholar
  58. 58.
    Stauffer D (1982) Adv Polymer Sci 44: 103; (1985) Introduction to Percolation Theory. Taylor & Francis, LondonGoogle Scholar
  59. 59.
    Brinker CJ, Scherer GW (1990) Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing. Academic Press, Harcourt Brace Javanovich, BostonGoogle Scholar
  60. 60.
    Agrawal P, Redner S, Reynolds PJ, Stanley HE (1979) J Phys A Math. Gen 12:2073CrossRefGoogle Scholar
  61. 61.
    Nakanishi H, Reynolds PJ (1979) Phys Letters 71A: 252Google Scholar
  62. 62.
    Tung CM, Dynes PJ (1982) J Appl Polym Sci 27: 569CrossRefGoogle Scholar
  63. 63.
    ASTM D2471-71 (1971) Gel Time and Peak Exothermic Temperature of Reacting Ther-mosetting ReinsGoogle Scholar
  64. 64.
    Chambon F, Winter HH (1985) Polym Bull 13:499; (1986) J Rheol 31: 683CrossRefGoogle Scholar
  65. 65.
    Winter HH (1997) Adv Polym Sci 134: 165CrossRefGoogle Scholar
  66. 66.
    Winter HH, Chambon F (1986) J Rheol 30: 367CrossRefGoogle Scholar
  67. 67.
    Muller R, Gerard E, Dugand P, Rempp P, Gnanou Y (1986) J Rheol 30: 367CrossRefGoogle Scholar
  68. 68.
    Lin HL, Yu TL, Cheng CH (1999) Macromolecules 32: 690CrossRefGoogle Scholar
  69. 69.
    Sykes MF, Essam JW (1963) Phys Rev Lett 10: 3; (1964) J Math Phys 5:1117CrossRefGoogle Scholar
  70. 70.
    Shante VKS, Kirkpatrick S (1971) Adv Phys 20: 325CrossRefGoogle Scholar
  71. 71.
    Domb C, Sykes MF (1961) Phys Rev 122: 77CrossRefGoogle Scholar
  72. 72.
    Domb C (1983) Ann Israel Phys Soc, Percolation Structures and Processes, 5:17 G. Deutscher, Zallen R, Adler J (ed)Google Scholar
  73. 73.
    Sykes MF, Essam JW (1964) Phys Rev 133: A310CrossRefGoogle Scholar
  74. 74.
    Essam JW (1972) Phase Transitions and Critical Phenomena. Domb C, Green M (eds), Vol. 2:192, Academic Press, New YorkGoogle Scholar
  75. 75.
    Moriguchi S, Udagawa K, Ichimatsu S (1987) Mathematical Formulae. Vol. 2:104 Printed by Iwanami, Tokyo, JapanGoogle Scholar
  76. 76.
    Sykes MF, Martin JL, Essam JW (1973) J Phys A Math Nucl Gen 6: 1306CrossRefGoogle Scholar
  77. 77.
    Gaunt DS, Sykes MF, Ruskin H (1976) J Phys A Math Gen 9: 1899CrossRefGoogle Scholar
  78. 78.
    Gaunt DS, Ruskin H (1978) J Phys A Math Gen 11: 1369CrossRefGoogle Scholar
  79. 79.
    Galam S, Mauger A (1994) Physica A205: 502; (1996) Phys Rev E53:2177; (1997) Phys Rev E55: 1230; (1998) Eur Phys J B1: 255Google Scholar
  80. 80.
    van der Marck SC (1997) Phys Rev E55:6593; (1997) Phys Rev E55:1514; (1997) Phys Rev E55: 1228; (1998) J Phys A Math Gen 31: 3449; (1998) Int J Mod Phys 9: 529Google Scholar
  81. 81.
    Wile LL (1945) Ph.D. dissertation, Columbia University, New YorkGoogle Scholar
  82. 82.
    Spouge JL (1985) J Phys A Math Gen 18: 3063; (1984) Adv Appl Prob 16:275CrossRefGoogle Scholar
  83. 83.
    Suematsu K (1998) Eur Phys J B6:93; (1998) Theoretical View of Physical Gels,Kobunshi Ronbunshu 55: No 12,723Google Scholar
  84. 84.
    Suematsu K (2000) Phys Rev E62: 3944Google Scholar
  85. 85.
    Dusek K, Vojta V (1977) Br Polym J 9: 164CrossRefGoogle Scholar
  86. 86.
    Dusek K, Ilavsky M (1975) J Polym Sci Symposium No53: 57,75Google Scholar
  87. 87.
    Dusek K (1979) Makromol Chem Suppl 2: 35; (1982) Development in Polymerization 3, Haward RN (ed), Elsevier Applied Science Publishers Ltd London p-143CrossRefGoogle Scholar
  88. 88.
    Somvarsky J, Dusek K (1994) Polym Bull 33: 369,377Google Scholar
  89. 89.
    Dotson NA, Macosko CW, Tirrell M (1992) Synthesis, Characterization and Theory of Polymeric Networks and Gels. Aharoni A (ed), Plenum Press, New YorkGoogle Scholar
  90. 90.
    Hild G (1998) Prog Polym Sci 23: 1019CrossRefGoogle Scholar
  91. 91.
    Clark AH (1995) Faraday Discuss 101: 77CrossRefGoogle Scholar
  92. 92.
    Matejka L, Dusek K (1980) Polym Bull 3:489Google Scholar
  93. 93.
    Broadbent SR, Hammersley JM (1957) Proc Camb Phil Sci 53: 629Google Scholar
  94. 94.
    Frisch HL, Hammersley JM (1963) J Soc Indust Appl Math 11: 894CrossRefGoogle Scholar
  95. 95.
    Stauffer D (1976) J Chem Soc Faraday Trans II72:1354Google Scholar
  96. 96.
    de Gennes PG (1976) J Physique (Letters) 37: L–1Google Scholar
  97. 97.
    Vyssotsky VA, Gordon SB, Frisch HL, Hammersley JM (1961) Phys Rev 123: 1566CrossRefGoogle Scholar
  98. 98.
    Gordon M, Scantlebury GR (1967) J Chem Soc (B): 1Google Scholar
  99. 99.
    Ross-Murphy SB (1975) J Polymer Sci Symp 53: 11CrossRefGoogle Scholar
  100. 100.
    Jones FR, Scales LE, Semlyen JA (1974) Polymer 15: 738CrossRefGoogle Scholar
  101. 101.
    Cooper DR, Semlyen JA (1973) Polymer 14: 185CrossRefGoogle Scholar
  102. 102.
    Semlyen JA (1982) Copolymerization In: Adv in Polymerization 3, Haward RN (ed), Elsevier Applied Science Publishers Ltd London; (1986) Cyclic Polymers, Elsevier, London; (1996) Large Ring Molecules. Wiley, New York 103. Semlyen JAGoogle Scholar
  103. 103.
    Ingold CK (1969) Structure and Mechanism in Organic Chemistry. Cornell University Press, IthacaGoogle Scholar
  104. 104.
    Eliel EL, Allinger NL, Angyal ST, Morrison GA (1965) Conformational Analysis, Chap 4, Interscience Publishers, New YorkGoogle Scholar
  105. 105.
    Ruzicka L, Stoll M, Schinz H (1926) Helv Chim Acta 9: 249CrossRefGoogle Scholar
  106. 106.
    Gropengiesser U, Stauffer D (1994) Physica A210: 320Google Scholar
  107. 107.
    Bunde A, Havlin S, Porto M (1995) Phys Rev Letters 74: 2714CrossRefGoogle Scholar
  108. 108.
    Herrmann HJ, Landau DP, and Stauffer D (1982) Phys Rev Letters 49:412CrossRefGoogle Scholar
  109. 109.
    Schmidt M, Burchard W (1981) Macromolecules 14: 370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Kazumi Suematsu
    • 1
  1. 1.Institute of Mathematical ScienceMieJapan

Personalised recommendations