Adhesion and Fracture of Interfaces Between Immiscible Polymers: from the Molecular to the Continuum Scal

  • Costantino Creton
  • Edward J. Kramer
  • Hugh R. Brown
  • Chung-Yuen Hui
Part of the Advances in Polymer Science book series (POLYMER, volume 156)


In order to obtain a measurable fracture toughness, a joint between two immiscible polymer glasses must be able to transfer mechanical stress across the interface. This stress transfer capability is very weak for narrow interfaces and a significant reinforcement can be achieved, either by the use of connecting chains (block copolymers), or by a broadening of the interface (random copolymers). In both cases, the stress is transferred by entanglements between polymer chains. The molecular criteria for efficient stress transfer, by connecting chains and by broad interfaces, are reviewed here with a special emphasis on the role of the molecular architecture (diblock, triblock or random copolymers) and molecular weight of the chains present at the interface. Recent theoretical developments in the relationship between macroscopic fracture toughness and interfacial stress transfer are also discussed, and the essential role of bulk plastic deformation properties of the polymers on either side of the interface are specifically addressed.


Fracture Polymer interfaces Adhesion Crazing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Helfand E, Tagami Y (1972) J Chem Phys 56:3592–3601Google Scholar
  2. 2.
    Hawker CJ (1994) J Am Chem Soc 116:11185–11186Google Scholar
  3. 3.
    Kotani Y, Kamigaito M, Sawamoto M (1998) Macromolecules 31:5582–5587Google Scholar
  4. 4.
    Hawker CJ, Elce E, Dao J, Volksen W, Russell TP, Barclay GG (1996) Macromolecules 29:2686–2688Google Scholar
  5. 5.
    Haddleton DM, Crossman MC, Hunt KH, Topping C, Waterson C, Suddaby KG (1997) Macromolecules 30:3992–3998Google Scholar
  6. 6.
    Odian G (1981) Principles of polymerization. Wiley, New YorkGoogle Scholar
  7. 7.
    Kramer EJ (1991) Physica B 173:189–198Google Scholar
  8. 8.
    Mills PJ, Green PF, Palmstrom CJ, Mayer JW, Kramer EJ (1984) Appl Phys Lett 45:957–959Google Scholar
  9. 9.
    Chaturvedi UK, Steiner U, Zak O, Krausch G, Schatz G, Klein J (1990) Appl Phys Lett 56:1228–1230Google Scholar
  10. 10.
    Chaturvedi U, Steiner U, Zak O, Krausch G, Klein J (1989) Phys Rev Lett 63:616–619Google Scholar
  11. 11.
    Payne RS, Clough AS, Murphy P, Mills PJ (1989) Nucl Instrum Methods B 42:130Google Scholar
  12. 12.
    Sokolov J, Rafailovich MH, Jones RAL, Kramer EJ (1989) Appl Phys Lett 54:590–592Google Scholar
  13. 13.
    Genzer JB, Rothman JB, Composto RJ (1994) Nucl Instrum Methods B 86:345Google Scholar
  14. 14.
    Brown HR, Deline VR, Green PF (1989) Nature 341:221–222Google Scholar
  15. 15.
    Kramer EJ (1996) MRS Bulletin 21:37Google Scholar
  16. 16.
    Boucher E, Folkers JP, Hervet H, Léger L, Creton C (1996) Macromolecules 29:774–782Google Scholar
  17. 17.
    Brown HR (1989) Macromolecules 22:2859–2860Google Scholar
  18. 18.
    Hutchinson JW, Suo Z (1991) Adv Appl Mech 29:63–191Google Scholar
  19. 19.
    Erdogan F, Sih CF(1963) J Basic Eng Trans ASME 85:519Google Scholar
  20. 20.
    Rice JR (1988) J Appl Mech 55:98–103Google Scholar
  21. 21.
    Xiao F, Hui CY, Kramer EJ (1993) J Mater Sci 28:5620–5629Google Scholar
  22. 22.
    Creton C, Kramer EJ, Hui CY, Brown HR (1992) Macromolecules 25:3075–3088Google Scholar
  23. 23.
    Kanninen MF (1973) Int J Fracture 9:83–92Google Scholar
  24. 24.
    Brown HR (1990) J Mater Sci 25:2791–2794Google Scholar
  25. 25.
    Xiao F, Hui C-Y, Washiyama J, Kramer EJ (1994) Macromolecules 27:4382–4390Google Scholar
  26. 26.
    Bernard B, Brown HR, Hawker CJ, Kellock AJ, Russell TP (1999) Macromolecules 32:6254–6260Google Scholar
  27. 27.
    Sikka M, Pellegrini NN, Schmitt EA, Winey KI (1997) Macromolecules 30:445–455Google Scholar
  28. 28.
    Washiyama J, Creton C, Kramer EJ (1992) Macromolecules 25:4751–4758Google Scholar
  29. 29.
    Lauterwasser BD, Kramer EJ (1979) Philos Mag A 39:469–495Google Scholar
  30. 30.
    Plummer CJG,K ausch HH, Creton C,K alb F,L éger L (1998) Macromolecules 31:6164–6176Google Scholar
  31. 31.
    Washiyama J, Kramer EJ, Creton C, Hui CY (1994) Macromolecules 27:2019–2024Google Scholar
  32. 32.
    Washiyama J, Kramer EJ, Hui CY (1993) Macromolecules 26:2928–2934Google Scholar
  33. 33.
    Washiyama J, Creton C, Kramer EJ, Xiao F, Hui CY (1993) Macromolecules 26:6011–6020Google Scholar
  34. 34.
    Brown HR, Char K, Deline VR, Green PF (1993) Macromolecules 26:4155–4163Google Scholar
  35. 35.
    Cho K, Brown HR, Miller DC (1990) J Polym Sci Part B Polym Phys 28:1699–1718Google Scholar
  36. 36.
    Char K, Brown HR, Deline VR (1993) Macromolecules 26:4164–4171Google Scholar
  37. 37.
    Creton C, Brown HR, Deline VR (1994) Macromolecules 27:1774–1780Google Scholar
  38. 38.
    Norton LJ, Smigolova V, Pralle MU, Hubenko A, Dai KH, Kramer EJ, Hahn S, Berglund C, DeKoven B (1995) Macromolecules 28:1999–2008Google Scholar
  39. 39.
    Kramer EJ (1995) Isr J Chem 35:49–54Google Scholar
  40. 40.
    Sha Y, Hui CY, Kramer EJ, Hahn SF, Berglund CA (1996) Macromolecules 29:4728–4736Google Scholar
  41. 41.
    Suo Z, Hutchinson JW (1990) Int J Fracture 43:1–18Google Scholar
  42. 42.
    Xu DB, Hui CY, Kramer EJ, Creton C (1991) Mech Mater 11:257–268Google Scholar
  43. 43.
    Raphaël E, de Gennes PG (1992) J Phys Chem 96:4002–4007Google Scholar
  44. 44.
    Ji H, de Gennes PG (1993) Macromolecules 26:520–525Google Scholar
  45. 45.
    Dai KH, Washiyama J, Kramer EJ (1994) Macromolecules 27:4544–4553Google Scholar
  46. 46.
    Dai CA, Jandt KD, Iyengar D, Slack NL, Dai KH, Davidson WB, Kramer EJ (1997) Macromolecules 30:549–560Google Scholar
  47. 47.
    Brown HR (1991) Macromolecules 24:2752–2756Google Scholar
  48. 48.
    Miller P, Buckley DJ, Kramer EJ (1991) J Mater Sci 26:4445–4454Google Scholar
  49. 49.
    Behan P, Bevis M, Hull D (1975) Proc R Soc London Ser A Mathematical and Physical Sciences A243:525Google Scholar
  50. 50.
    Hui CY, Ruina A, Creton C, Kramer EJ (1992) Macromolecules 25:3948–3955Google Scholar
  51. 51.
    Sha Y, Hui CY, Ruina A, Kramer EJ (1997) Acta Mater 45:3555–3563Google Scholar
  52. 52.
    Donald AM, Kramer EJ, Bubeck RA (1982) J Polym Sci Polym Phys Ed 20:1129–1141Google Scholar
  53. 53.
    Donald AM, Kramer EJ (1982) J Polym Sci Polym Phys Ed 20:899–909Google Scholar
  54. 54.
    Sha Y, Hui CY, Ruina A, Kramer EJ (1995) Macromolecules 28:2450–2459Google Scholar
  55. 55.
    Goodier JN, Field FA (1963) In: Drucker DC, Gilman JJ (eds) International conference on fracture of solids (Metallurgical Society conferences), vol 20. Interscience, New York,pp 103–118Google Scholar
  56. 56.
    Dugdale DS (1960) J Mech Phys Solids 8:100–104Google Scholar
  57. 57.
    Kramer EJ (1997) Plast, Rubber and Compos Process Appl 26:241–249Google Scholar
  58. 58.
    Wool RP, Yuan BL, McGarel OJ (1989) Polym Eng Sci 29:1340–1367Google Scholar
  59. 59.
    Dai CA (1995) PhD thesis, Cornell UniversityGoogle Scholar
  60. 60.
    Kramer EJ, Norton LJ, Dai CA, Sha Y, Hui CY (1994) Faraday Discuss Chem Soc 98:31–46Google Scholar
  61. 61.
    Gent AN, Schultz J (1972) J Adhes 3:281–294Google Scholar
  62. 62.
    Maugis D, Barquins M (1978) J Phys D Appl Phys 11:1989–2023Google Scholar
  63. 63.
    Passade N, Creton C, Gallot Y (2000) Polymer 41:9249–9263Google Scholar
  64. 64.
    Brown HR, Krappe U, Stadler R (1996) Macromolecules 29:6582–6588Google Scholar
  65. 65.
    Lake GJ, Lindley PB (1965) J Appl Polym Sci 9:1233–1251Google Scholar
  66. 66.
    Dai CA, Kramer EJ, Washiyama J, Hui CY (1996) Macromolecules 29:7536–7543Google Scholar
  67. 67.
    Schnell R, Stamm M, Creton C (1998) Macromolecules 31:2284–2292Google Scholar
  68. 68.
    Schnell R, Stamm M, Creton C (1999) Macromolecules 32:3420–3425Google Scholar
  69. 69.
    Brown HR (1999) in Macromolecules 34:3720–3724Google Scholar
  70. 70.
    Benkoski J, Kramer EJ, Fredrickson GH (2000) J. Polym. Sci. Polym. Phys. in press Ed.Google Scholar
  71. 71.
    Bernard B, Brown HR, Russell TP, Hawker CJ (1996) Polym Mater Sci Eng 29:155–156Google Scholar
  72. 72.
    Kulasekere R, Kaiser H, Ankner JF, Russell TP, Brown HR, Hawker CJ, Mayes AM (1996) Macromolecules 29:5493–5496Google Scholar
  73. 73.
    Kulasekere R, Kaiser H, Ankner JF, Russell TP, Brown HR, Hawker CJ, Mayes AM (1996) Physica B 221:306–308Google Scholar
  74. 74.
    Smith GD, Russell TP, Kulasekere R, Ankner JF, Kaiser H (1996) Macromolecules 29:4120–4124Google Scholar
  75. 75.
    Dai CA, Osuji CO, Jandt KD, Dair BJ, Ober CK, Kramer EJ (1997) Macromolecules 30:6727–6736Google Scholar
  76. 76.
    Edgecombe BD, Stein JA, Fréchet JMJ, Xu Z, Kramer EJ (1998) Macromolecules 31:1292–1304Google Scholar
  77. 77.
    Edgecombe BD, Fréchet JM, Xu Z, Kramer EJ (1998) Chem Mater 10:994–1002Google Scholar
  78. 78.
    Xu Z, Kramer EJ, Edgecombe BD, Fréchet JMJ (1997) Macromolecules 30:79–84Google Scholar
  79. 79.
    Dai C-A, Dair BJ, Dai KH, Ober CK, Kramer EJ, Hui CY, Jelinski LW (1994) Phys Rev Lett 73:2472–2475Google Scholar
  80. 80.
    Noolandi J, Shi AC (1995) Phys Rev Lett 74:2836Google Scholar
  81. 81.
    Milner ST, Fredrickson GH (1995) Macromolecules 28:7953–7956Google Scholar
  82. 82.
    Shull KR, Kramer EJ, Hadziioannou G, Tang W (1990) Macromolecules 23:4780–4787Google Scholar
  83. 83.
    Paul DR, Barlow JW (1984) Polymer 25:487–494Google Scholar
  84. 84.
    ten Brinke G, Karasz FE, MacKnight WJ (1983) Macromolecules 16:1827–1832Google Scholar
  85. 85.
    O’Shaughnessy B, Sawhney U (1996) Macromolecules 29:7230–7239Google Scholar
  86. 86.
    Fredrickson GH, Milner ST (1996) Macromolecules 29:7386–7390Google Scholar
  87. 87.
    O’Shaughnessy B, Vavylonis D (1999) Macromolecules 32:1785–1796Google Scholar
  88. 88.
    Fredrickson GH (1997) J Chem Phys106:2458–2468Google Scholar
  89. 89.
    Jiao J, Kramer EJ, de Vos S, Koning C (1999) Polym Commun 40:3585–3588Google Scholar
  90. 90.
    Jiao J, Kramer EJ, de Vos S, Möller M, Koning C (1999) Macromolecules 32:6261–6269Google Scholar
  91. 91.
    Lyu S-P, Cernohous JJ, Bates FS, Macosko CW (1999) Macromolecules 32:106–110Google Scholar
  92. 92.
    Boucher E (1995) Thèse de doctorat, Université Paris VI, FranceGoogle Scholar
  93. 93.
    Lee Y, Char K (1994) Macromolecules 27:2603–2606Google Scholar
  94. 94.
    Lee Y, Char K (1998) Macromolecules 31:7091–7094Google Scholar
  95. 95.
    Beck Tan NC, Peiffer DG, Briber RM (1996) Macromolecules 29:4969–4975Google Scholar
  96. 96.
    Boucher E, Folkers JP, Creton C, Hervet H, Léger L (1997) Macromolecules 30:2102–2109Google Scholar
  97. 97.
    Bidaux JE, Smith GD, Bernet N, Manson JA, Hilborn J (1996) Polymer 37:1129–1136Google Scholar
  98. 98.
    Duchet J, Chapel JP, Chabert B, Gerard JF (1998) Macromolecules 31:8264–8272Google Scholar
  99. 99.
    Xue YQ, Tervoort TA, Lemstra PJ (1998) Macromolecules 31:3075–3080Google Scholar
  100. 100.
    Cho K, Seo KH, Ahn TO, Kim J, Kim KU (1997) Polymer 38:4825–4830Google Scholar
  101. 101.
    Cho K, Li F (1998) Macromolecules 31:7495–7505Google Scholar
  102. 102.
    Kalb F, Léger L, Creton C, Plummer CJG, Marcus P, Magalhaes A (2000) Macromolecules 34:2702–2709Google Scholar
  103. 103.
    Kalb F (1998) Thèse de doctorat, Université Paris VI, FranceGoogle Scholar
  104. 104.
    Wool RP (1995) Polymer interfaces. Hanser Verlag, MunichGoogle Scholar
  105. 105.
    Dai KH, Kramer EJ (1994) Polymer 35:157–161Google Scholar
  106. 106.
    Dai KH, Norton, LJ, Kramer, EJ (1994) Macromolecules 27:1949–1956Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Costantino Creton
    • 1
  • Edward J. Kramer
    • 2
  • Hugh R. Brown
    • 3
  • Chung-Yuen Hui
    • 4
  1. 1.Laboratoire de Physico-Chimie Structurale et MacromoléculaireESPCIParis Cédex 05France
  2. 2.University of California, Santa BarbaraDepartment of Materials Engineering IIUSA
  3. 3.BHP Steel InstituteUniversity of WollongongWollongongAustralia
  4. 4.Department of Theoretical and Applied MechanicsCornell UniversityIthacaUSA

Personalised recommendations