Skip to main content

Computation in Gene Networks

  • Conference paper
  • First Online:
Book cover Machines, Computations, and Universality (MCU 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2055))

Included in the following conference series:

  • 314 Accesses

Abstract

We present a biological computing paradigm that is based on genetic regulatory networks. Using a model of gene expression by piecewise linear differential equations we show that the evolution of protein concentrations in a cell can be considered as a process of computation. This is demonstrated by showing that this model can simulate memory bounded Turing machines. The simulation is robust with respect to perturbations of the system, an important property for both analog computers and biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

    Google Scholar 

  2. L. Kari. DNA computing: the arrival of biological mathematics. The mathematical intelligencer, 19(2):24–40, 1997.

    MathSciNet  Google Scholar 

  3. J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City, 1991.

    Google Scholar 

  4. C. Mead. Analog VLSI and Neural Systems. Addison-Wesley, 1989.

    Google Scholar 

  5. H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell. Molecular cell biology. W.H. Freemand and Company, 4th edition, 2000.

    Google Scholar 

  6. S.A. Kauffman. Metabolic stability and epigenesis in randomly connected nets. Journal of Theoretical Biology, 22:437, 1969.

    Article  MathSciNet  Google Scholar 

  7. D. Bray. Protein molecules as computational elements in living cells. Nature, 376:307–312, July 1995. Computation in Gene Networks 23

    Article  Google Scholar 

  8. H.H. McAdams and A. Arkin. Simulation of prokaryotic genetic circuits. Annual Review of Biophysics and Biomolecular Structure, 27:199–224, 1998.

    Article  Google Scholar 

  9. T.S. Gardner, C.R. Cantor, and J.J. Collins. Construction of a genetic toggle switch in E. coli. Nature, 403:339–342, January 2000.

    Article  Google Scholar 

  10. M.B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators. Nature, 403:335–338, January 2000.

    Article  Google Scholar 

  11. A. Arkin and J. Ross. Computational functions in biochemical reaction networks. Biophysical Journal, 67:560–578, 1994.

    Article  Google Scholar 

  12. T. Mestl, E. Plahte, and S.W. Omholt. A mathematical framework for describing and analyzing gene regulatory networks. Journal of Theoretical Biology, 176:291–300, 1995.

    Article  Google Scholar 

  13. L. Glass. Combinatorial and topological method in chemical kinetics. Journal of Chemical Physics, 63:1325–1335, 1975.

    Article  Google Scholar 

  14. C. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, Mass., 1995.

    Google Scholar 

  15. H.T. Siegelmann. Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhauser, Boston, 1999.

    Google Scholar 

  16. H.T. Siegelmann, A. Roitershtein, and A. Ben-Hur. Noisy neural networks and generalizations. In Proceedings of the Annual Conference on Neural Information Processing Systems 1999 (NIPS*99). MIT Press, 2000.

    Google Scholar 

  17. W. Maass and P. Orponen. On the effect of analog noise in discrete time computation. Neural Computation, 10(5):1071–1095, 1998.

    Article  Google Scholar 

  18. L.F. Landweber and L. Kari. The evolution of cellular computing: nature’s solution to a computational problem. In Proceedings of the 4th DIMACS meeting on DNA based computers, pages 3–15, 1998.

    Google Scholar 

  19. L. Glass and J.S. Pasternack. Stable oscillations in mathematical models of biological control systems. Journal of Mathematical Biology, 6:207–223, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  20. R.N. Tchuraev. A new method fo rthe analysis of the dynamics of the molecular genetic control systems. I. description of the method of generalized threshold models. Journal of Theoretical Biology, 151:71–87, 1991.

    Article  Google Scholar 

  21. T. Mestl, R.J. Bagley, and L. Glass. Common chaos in arbitrarily complex feedback networks. Physical Review Letters, 79(4):653–656, 1997.

    Article  Google Scholar 

  22. L. Glass and C. Hill. Ordered and disordered dynamics in random networks. Europhysics Letters, 41(6):599–604, 1998.

    Article  Google Scholar 

  23. M.S. Branicky. Analog computation with continuous ODEs. In Proceedings of the IEEE Workshop on Physics and Computation, pages 265–274, Dallas, TX, 1994.

    Google Scholar 

  24. E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical systems with piecewise-constant derivatives. Theoretical Computer Science, 138:35–66, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Saito and K. Kaneko. Geometry of undecidable systems. Prog. Theor. Phys., 99:885–890, 1998.

    Google Scholar 

  26. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.

    Google Scholar 

  27. P. Koiran and C. Moore. Closed-form analytic maps in one and two dimensions can simulate universal Turing machines. Theoretical Computer Science, 210:217–223, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  28. J.E. Lewis and L. Glass. Nonlinear dynamics and symbolic dynamics of neural networks. Neural Computation, 4:621–642, 1992.

    Article  Google Scholar 

  29. P. Orponen. The computational power of discrete hopfield nets with hidden units. Neural Computation, 8:403–415, 1996.

    Article  Google Scholar 

  30. P. Orponen. Computing with truly asynchronous threshold logic networks. Theoretical Computer Science, 174:97–121, 1997.

    Article  MathSciNet  Google Scholar 

  31. C. Moore. Generalized one-sided shifts and maps of the interval. Nonlinearity, 4:727–745, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  32. J.P. Crutchfield and K. Young. Computation at the onset of chaos. In W.H. Zurek, editor, Complexity, Entropy and the Physics of Information, pages 223–269, Redwood City, CA, 1990. Addison-Wesley.

    Google Scholar 

  33. C. Moore. Queues, stacks, and transcendentality at the transition to chaos. Physica D, 135:24–40, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. Edwards, H.T. Siegelmann, K. Aziza, and L. Glass. Symbolic dynamics and computation in model gene networks. in preparation.

    Google Scholar 

  35. J. Sima and P. Orponen. A continuous-time hopfield net simulation of discrete neural networks. Technical Report 773, Academy of Sciences of the Czech Republic, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben-Hur, A., Siegelmann, H.T. (2001). Computation in Gene Networks. In: Margenstern, M., Rogozhin, Y. (eds) Machines, Computations, and Universality. MCU 2001. Lecture Notes in Computer Science, vol 2055. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45132-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45132-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42121-4

  • Online ISBN: 978-3-540-45132-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics