Advertisement

Progress in RoboCup Soccer Research in 2000

  • M. Asada
  • A. Birk
  • E. Pagello
  • M. Fujita
  • I. Noda
  • S. Tadokoro
  • D. Duhaut
  • P. Stone
  • M. Veloso
  • T. Balch
  • H. Kitano
  • B. Thomas
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 271)

Abstract

In addition to researchers in AI and robotics, RoboCup attracts ordinary people, especially kids, high school and university students. Over 3000 people from 35 nations around the world have participated in RoboCup since the great success of the First Robot World Cup Soccer Games and Conferences, RoboCup-97 [1] held in conjunction with the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97). Every year, the number of participating teams is increasing about 50%, that is, 35 teams in RoboCup- 97, 64 teams in RoboCup-98 [2], and 90 teams in RoboCup-99 [3], and almost same number of teams in RoboCup-2000. Attendance in 2000 was impacted by the application of a new qualification process, difficulties for some of the European teams to travel to Australia, and by the addition of a European RoboCup competition, EURO-2000. This paper focuses on a discussion of the challenging research problems present in RoboCup and how they have been concretely addressed in RoboCup competitions in 2000.

Keywords

MultiAgent System Humanoid Robot Golem Team Robot Soccer RoboCup Rescue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hiroaki Kitano, editor. RoboCup-97: Robot Soccer World Cup I. Springer, Lecture Note in Artificail Intelligence 1395, 1998.Google Scholar
  2. [2]
    Minoru Asada and Hiroaki Kitano, editors. RoboCup-98: Robot Soccer World Cup II. Springer, Lecture Note in Artificail Intelligence 1604, 1999.Google Scholar
  3. [3]
    Manuela Veloso, Enrico Pagello, and Hiroaki Kitano, editors. RoboCup-99: Robot Soccer World Cup III. Springer, Lecture Note in Artificail Intelligence (to appear), 2000.Google Scholar
  4. [4]
    Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, and Hitoshi Matsubara. Robocup: A challeng problem for ai and robotics. In Hiroaki Kitano, editor, RoboCup-97: Robot Soccer World Cup I, pages 1–19. Springer, Lecture Note in Artificail Intelligence 1395, 1998.Google Scholar
  5. [5]
    Michael W Behavior classification with self-organizing maps.Google Scholar
  6. [6]
    Carlos Marques and Pedro Lima. A localization method for a soccer robot using a vision-based omni directional sensor. In Peter Stone, Tucker Balch, and Gerhard Kraetzschmar, editors, RoboCup-2000: Robot Soccer World Cup IV. Springer Verlag, Berlin, 2001. To appear.Google Scholar
  7. [7]
    Satoshi Tadokoro, Hiroaki Kitano, Tomoichi Takahashi, Itsuki Noda, Hitoshi Matsubara, Atsuhi Shinjoh, Tetsuya Koto, Ikuo Takeuchi, Hironao Takahashi, Fumitoshi Matsuno, Mitsuo Hatayama, Jun Nobe, Susumu Shimada, The RoboCup-Rescue Project: A Robotic Approach to the Disaster Mitigation Problem, Proc. IEEE International Conference on Robotics and Automation, 2000.Google Scholar
  8. [8]
    Yoshitaka Kuwata, Atsushi Shinjoh, Proc. 4th International Workshop on RoboCup, 2000.Google Scholar
  9. [9]
    Tomoichi Takahashi, Ikuo Takeuchi, Tetsuhiko Koto, Satoshi Tadokoro, Itsuki Noda, RoboCup-Rescue disaster simulator architecture Proc. 4th International Workshop on RoboCup, 2000.Google Scholar
  10. [10]
    Toshiyuki Kaneda, Fumitoshi Matsuno, Hironao Takahashi, Takeshi Matsui, Masayasu Atsumi, Michinori Hatayama, Kenji Tayama, Ryousuke Chiba, Kazunori Takeuchi, Simulator complex for RoboCup-Rescue Simulation Project — As test-bed for multi-agent organizational behavior in emergency case of large-scale disaster, Proc. 4th International Workshop on RoboCup, 2000.Google Scholar
  11. [11]
    Masayuki Ohta, RoboCup-Rescue simulation: in case of fire fighting planning, Proc. 4th International Workshop on RoboCup, 2000.Google Scholar
  12. [12]
    Masayuki Ohta, Tetsuhiko Koto, Ikuo Takeuchi, Tomoichi Takahashi, Design and implementation of the kernel and agents for the RoboCup-Rescue, Proc. 4th International Conference on MultiAgent Systems, 2000.Google Scholar
  13. [13]
    Hiroaki Kitano, RoboCup-Rescue: A grand challenge for multiagent systems, Proc. 4th International Conference on MultiAgent Systems, 2000.Google Scholar
  14. [14]
    Satoshi Tadokoro, Hiroaki Kitano, ed., The RoboCup-Rescue: A challenge for emergency search & rescue at large-scale disasters, Kyoritsu Publ., 2000 (in Japanese).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • M. Asada
    • 1
  • A. Birk
    • 2
  • E. Pagello
    • 3
  • M. Fujita
    • 4
  • I. Noda
    • 5
  • S. Tadokoro
    • 6
  • D. Duhaut
    • 7
  • P. Stone
    • 8
  • M. Veloso
    • 9
  • T. Balch
    • 9
  • H. Kitano
    • 10
  • B. Thomas
    • 11
  1. 1.Adaptive Machine SystemsOsaka UniversitySuita, OsakaJapan
  2. 2.AI Lab.Vrije Universiteit BrusselBrusselsBelgium
  3. 3.DFIThe University of PaduaPadovaItaly
  4. 4.DCLSony Corp.TokyoJapan
  5. 5.ETL, AIST, MITIJapan
  6. 6.Computer & Systems EngineeringKobe UniversityKobeJapan
  7. 7.LRPVelizyFrance
  8. 8.AT&T Labs - ResearchFlorham ParkUSA
  9. 9.School of Computer ScienceCMUPittsburghUSA
  10. 10.Computer Science Lab, Sony Corp.TokyoJapan
  11. 11.Bellarine Secondary CollegeVictoriaAustralia

Personalised recommendations