Advertisement

Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot

  • Richard Altendorfer
  • Uluc Saranli
  • Haldun Komsuoglu
  • Daniel Koditschek
  • H. Benjamin BrownJr.
  • Martin Buehler
  • Ned Moore
  • Dave McMordie
  • Robert Full
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 271)

Abstract

This paper presents the first evidence that the Spring Loaded Inverted Pendulum (SLIP) may be “anchored” in our recently designed compliant leg hexapod robot, RHex. Experimentally measured RHex center of mass trajectories are fit to the SLIP model and an analysis of the fitting error is performed. The fitting results are corroborated by numerical simulations. The “anchoring” of SLIP dynamics in RHex offers exciting possibilities for hierarchical control of hexapod robots.

Keywords

Artificial Intelligence System Theory Invert Pendulum Hierarchical Control Step Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Saranli U, Buehler M and Koditschek D E 2000 Design, Modeling and Preliminary Control of a Compliant Hexapod Robot. Proc. IEEE Int. Conf. Rob. Aut. 3:2589–2596.Google Scholar
  2. [2]
    Blickhan R and Pull R 1993 Similarity in multilegged locomotion: Bouncing like a monopode. J. J. Comp. Physiol. A 173, 509–517.Google Scholar
  3. [3]
    Raibert M 1986 Dynamic Robots that Balance, MIT Press, Cambridge.Google Scholar
  4. [4]
    Schwind W J and Koditschek D E 2000 Approximating the Stance Map of a 2 DOF Monoped Runner. Journal of Nonlinear Science 10:533–568.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Saranli U, Schwind W J, and Koditschek D E May 1998 Toward the Control of Multi-Jointed, Monoped Runner. IEEE Int. Conf. on Rob. and Aut. Leuven, Belgium pp 2676–2682.Google Scholar
  6. [6]
    Full R J and Koditschek D E 1999 Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land. J. Exp. Bio. 202:3325–3332.Google Scholar
  7. [7]
    Koditschek D E and Bühler M Dec 1991 Analysis of a simplified hopping robot. International Journal of Robotics Research 10(6):587–605.CrossRefGoogle Scholar
  8. [8]
    Bühler M, Koditschek D E, and Kindlmann P J 1990 A Family of Robot Control Strategies for Intermittent Dynamical Environments. IEEE Control Systems Magazine 10(2):16–22.CrossRefGoogle Scholar
  9. [9]
    Rizzi A A, Whitcomb L L, and Koditschek D E 1992 Distributed Real-Time Control of a Spatial Robot Juggler. IEEE Computer 25(5):12–24.Google Scholar
  10. [10]
    Nakanishi J, Fukuda T, and Koditschek D E 2000 A Brachiating Robot Controller. IEEE Trans. Rob. Aut. 16(2):109–123.CrossRefGoogle Scholar
  11. [11]
    Schwind W J 1998 Spring Loaded Inverted Pendulum Running: A Plant Model. PhD thesis, University of Michigan.Google Scholar
  12. [12]
    Full R J and Farley C T 2000 Musculoskeletal Dynamics in Rhythmic Systems: A Comparative Approach to Legged Locomotion. In: Winter, Crago (eds) Biomechanics & Neural Control of Posture & Movement Springer Verlag, New York, pp 192–205.Google Scholar
  13. [13]
    Hogan N Mar 1985 Impedance Control: An Approach to Manipulation. ASME Journal of Dynamic Systems, Measurement, and Control 107:1–7.MATHCrossRefGoogle Scholar
  14. [14]
    Pratt J and Pratt G May 1998 Intuitive Control of a Planar Bipedal Walking Robot ICRA Leuven, Belgium pp 2014–2021.Google Scholar
  15. [15]
    Saranli U 2000 SimSect Hybrid Dynamical Simulation Environment. University of Michigan Technical Report CSE-TR-437-00.Google Scholar
  16. [16]
    Alexander R McN 1992 A Model of Bipedal Locomotion on Compliant Legs Phil. Trans.: Biol. Sc. 338(1284):189–198.CrossRefGoogle Scholar
  17. [17]
    Carver S 2000 The Limits of Deadbeat Control for the Spatial SLIP. in preparation.Google Scholar
  18. [18]
    Schmitt J and Holmes P 2000 Mechanical models for insect locomotion: Dynamics and stability in the horizontal plane I: Theory; II: Application. Biological Cybernetics 83(6):501–515 and 517–527.MATHCrossRefGoogle Scholar
  19. [19]
    Ruina A, personal communication.Google Scholar
  20. [20]
    Burridge R R, Rizzi A A, and Koditschek D E 1999 Sequential Composition of Dynamically Dexterous Robot Behaviors. Int. J. Rob. Res. 18(6):534–555.CrossRefGoogle Scholar
  21. [21]
    Klavins E and Koditschek D E 2000 A formalism for the composition of concurrent robot behaviors. Proc. IEEE Conf. Rob. and Aut. 4:3395–3402.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Richard Altendorfer
    • 1
  • Uluc Saranli
    • 1
  • Haldun Komsuoglu
    • 1
  • Daniel Koditschek
    • 1
  • H. Benjamin BrownJr.
    • 2
  • Martin Buehler
    • 3
  • Ned Moore
    • 3
  • Dave McMordie
    • 3
  • Robert Full
    • 4
  1. 1.Artificial Intelligence LaboratoryUniversity of MichiganAnn Arbor
  2. 2.The Robotics InstituteCarnegie Mellon UniversityPittsburgh
  3. 3.Ambulatory Robotics Laboratory, Dept. of Mech. EngineeringMcGill UniversityMontréalCanada
  4. 4.Dept. of Integrative BiologyUniversity of California at BerkeleyBerkeley

Personalised recommendations