Skip to main content

Light-Cone Quantization: Foundations and Applications

  • Chapter
  • First Online:
Methods of Quantization

Part of the book series: Lecture Notes in Physics ((LNP,volume 572))

Abstract

These lecture notes review the foundations and some applications of light-cone quantization. First I explain how to choose a time in special relativity. Inclusion of Poincaré invariance naturally leads to Dirac’s forms of relativistic dynamics. Among these, the front form, being the basis for light-cone quantization, is my main focus. I explain a few of its peculiar features such as boost and Galilei invariance or separation of relative and center-of-mass motion. Combining light-cone dynamics and field quantization results in light-cone quantum field theory. As the latter represents a first-order system, quantization is somewhat nonstandard. I address this issue using Schwinger’s quantum action principle, the method of Faddeev and Jackiw, and the functional Schrödinger picture. A finite-volume formulation, discretized light-cone quantization, is analysed in detail. I point out some problems with causality, which are absent in infinite volume. Finally, the triviality of the light-cone vacuum is established. Coming to applications, I introduce the notion of light-cone wave functions as the solutions of the light-cone Schrödinger equation. I discuss some examples, among them nonrelativistic Coulomb systems and model field theories in two dimensions. Vacuum properties (like chiral condensates) are reconstructed from the particle spectrum obtained by solving the light-cone Schrödinger equation. In a last application, I make contact with phenomenology by calculating the pion wave function within the Nambu and Jona-Lasinio model. I am thus able to predict a number of observables like the pion charge and core radius, the r.m.s. transverse momentum, the pion structure function and the pion distribution amplitude. The latter turns out to be the asymptotic one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Abdalla, M.C.B. Abdalla: Phys. Rep. 265, 253 (1996)

    Google Scholar 

  2. S.R. Amendolia et al.: Nucl. Phys. B 277, 168 (1986)

    Article  ADS  Google Scholar 

  3. F. Antonuccio, S.J. Brodsky, S. Dalley: Phys. Lett. B 412, 104 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Ashery: ‘Diffractive Dissociation of High Momentum Pions’, hepex/9910024 (1999)

    Google Scholar 

  5. T. Banks: TASI Lectures on Matrix Theory, hep-th/9911068 (1999)

    Google Scholar 

  6. T. Banks, W. Fischler, S. Shenker, L. Susskind: Phys. Rev. D 55, 5112 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. W. A. Bardeen, R.B. Pearson, E. Rabinovici: Phys. Rev. D 21, 1037 (1980)

    Article  ADS  Google Scholar 

  8. A. Bassetto, G. Nardelli, R. Soldati: Yang-Mills Theories in Algebraic Noncovariant Gauges: Canonical Quantization and Renormalization (World Scientific, Singapore 1991)

    Google Scholar 

  9. A. Bassetto, F. Vian, L. Griguolo: ‘Light-Front Vacuum and Instantons in Two Dimensions’, hep-th/0004026 (2000)

    Google Scholar 

  10. V. Belyaev, M. Johnson: Mod. Phys. Lett. A 13, 2909 (1998)

    Article  ADS  Google Scholar 

  11. V. Belyaev, M. Johnson: Phys. Lett. B 423, 379 (1998)

    Article  ADS  Google Scholar 

  12. W. Bentz, T. Hama, T. Matsuki, K. Yazaki: Nucl. Phys. A 651, 143 (1999)

    Article  ADS  Google Scholar 

  13. V. Bernard, R. Brockmann, W. Weise: ‘The Goldstone pion and the quarkantiquark pion (II). Pion size and decay’, Regensburg preprint, TPR 85-02 (1985)

    Google Scholar 

  14. H. Bethe, E. Salpeter: Quantum Mechanics of One-and Two-Electron Atoms (Springer, Berlin, Heidelberg, New York 1957)

    MATH  Google Scholar 

  15. J. Bjorken, S. Drell: Relativistic Quantum Mechanics (McGraw-Hill, 1964)

    Google Scholar 

  16. A.H. Blin, B. Hiller, M. Schaden: Z. Phys. A 331, 75 (1988)

    ADS  Google Scholar 

  17. N. Bogolubov, A. Logunov, A. Oksak, I. Todorov: General Principles of Quantum Field Theory (Kluwer Academic, 1990)

    Google Scholar 

  18. N. Bogolubov, A. Logunov, I. Todorov: Introduction to Axiomatic Field Theory (Benjamin, New York 1975)

    Google Scholar 

  19. A. Borderies, P. Grange, E. Werner: Phys. Lett. B 319, 490 (1993)

    Article  ADS  Google Scholar 

  20. A. Borderies, P. Grange, E. Werner: Phys. Lett. B 345, 458 (1995)

    Article  ADS  Google Scholar 

  21. S. Brodsky, C.-R. Ji, M. Sawicki: Phys. Rev. D 32, 1530 (1985)

    Article  ADS  Google Scholar 

  22. S. Brodsky, G. Lepage: ‘Exclusive Processes in Quantum Chromodynamics’. In: Perturbative Quantum Chromodynamics, ed. by A.H. Mueller (World Scientific, 1989)

    Google Scholar 

  23. S. Brodsky, J.R. Roskies, R. Suaya: Phys. Rev. D 8, 4574 (1973)

    Article  ADS  Google Scholar 

  24. M. Burkardt: Phys. Rev. D 54, 2913 (1996)

    Article  ADS  Google Scholar 

  25. M. Burkardt: Phys. Rev. D 57, 1136 (1998)

    Article  ADS  Google Scholar 

  26. C. Callan, N. Coote, D. Gross: Phys. Rev. D 13, 1649 (1976)

    Article  ADS  Google Scholar 

  27. A. Casher: Phys. Rev. D 14, 452 (1976)

    Article  ADS  Google Scholar 

  28. A. Casher, S. Noskowicz, L. Susskind: Nucl. Phys. B 32, 75 (1971)

    Article  ADS  Google Scholar 

  29. A. Casher, L. Susskind: Phys. Rev. D 9, 436 (1974)

    Article  ADS  Google Scholar 

  30. D. Chakrabarti, A. Mukherjee, R. Kundu, A. Harindranath: Phys.Lett. B 480, 409 (1999)

    ADS  Google Scholar 

  31. S. Chakrabarty, K. Gupta, N.N. Singh, A.N. Mitra: Prog. Part. Nucl. Phys. 22, 43 (1989)

    Article  ADS  Google Scholar 

  32. S.-J. Chang, R. G. Root, T.-M. Yan: Phys. Rev. D 7, 1133 (1973)

    Article  ADS  Google Scholar 

  33. V. Chernyak, A. Zhitnitsky: Phys. Rep. 112, 173 (1984)

    Article  ADS  Google Scholar 

  34. P. Chung, F. Coester, W. Polyzou: Phys. Lett. B 205, 545 (1988)

    Article  ADS  Google Scholar 

  35. F. Coester: Prog. Part. Nucl. Phys. 29, 1 (1992)

    Article  ADS  Google Scholar 

  36. F. Coester, W. Polyzou: Phys. Rev. D 26, 1348 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Coleman: Comm. Math. Phys. 31, 259 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. R. Courant, D. Hilbert: Methods of Mathematical Physics (Interscience, New York 1962)

    MATH  Google Scholar 

  39. S. Dancoff: Phys. Rev. 78, 382 (1950)

    Article  MATH  ADS  Google Scholar 

  40. B. DeWitt: ‘The space-time approach to quantum field theory’. In: Relativity, Groups and Topology, II, Les Houches 1983, Session XL, ed. by B.S. DeWitt, R. Stora (North-Holland, Amsterdam 1984)

    Google Scholar 

  41. D. Diakonov: ‘Chiral Symmetry Breaking by Instantons’. In: Selected Topics in Nonperturbative QCD, “Enrico Fermi”, Course CXXX, Varenna, Italy, 1995, ed. by A. Di Giacomo, D. Diakonov, (Proceedings International School of Physics IOS Press, Amsterdam 1996)

    Google Scholar 

  42. C. Dietmaier, T. Heinzl, M. Schaden, E. Werner: Z. Phys. A 334, 220 (1989)

    ADS  Google Scholar 

  43. P.A.M. Dirac: Rev. Mod. Phys. 21, 392 (1949)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. P.A.M. Dirac: Lectures on quantum mechanics (Benjamin, New York 1964)

    Google Scholar 

  45. G. Domokos: ‘Introduction to the Characteristic Initial-Value Problem in Quantum Field Theory’. In: Boulder Lectures, Vol. XIV, ed. by A.O. Barut, W.E. Brittin (Colorado University Press, Boulder 1972)

    Google Scholar 

  46. H. Dosch, S. Narison: Phys. Lett. B 417, 173 (1998)

    Article  ADS  Google Scholar 

  47. S. Drell, T.-M. Yan: Phys. Rev. Lett. 24, 181 (1970)

    Article  ADS  Google Scholar 

  48. Z. Dziembowski: Phys.Rev. D 37, 778 (1988)

    Article  ADS  Google Scholar 

  49. L. Faddeev, R. Jackiw: Phys. Rev. Lett. 60, 1692 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. V. Fock: Z. Phys. 98, 145 (1935)

    Article  MATH  ADS  Google Scholar 

  51. S. Fubini, A. Hanson, R. Jackiw: Phys. Rev. D 7, 1732 (1973)

    Article  ADS  Google Scholar 

  52. M. Fuda: Ann. Phys. (N.Y.) 197, 265 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. I. Gelfand, G. Shilov: Generalized Functions (Academic Press, New York 1964)

    Google Scholar 

  54. M. Gell-Mann, R. J. Oakes, B. Renner: Phys. Rev. 175, 2195 (1968)

    Article  ADS  Google Scholar 

  55. D. Gitman, I. Tyutin: Quantization of Fields with Constraints (Springer, Berlin, Heidelberg, New York 1990)

    MATH  Google Scholar 

  56. M. Glück, E. Reya, I. Schienbein: Eur. Phys. J. C 10, 313 (1999)

    Article  ADS  Google Scholar 

  57. J. Goldstone: Nuovo Cim. 19, 154 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  58. M. Green, J. Schwarz, E. Witten: Superstring Theory (Cambridge University Press, Cambridge 1987)

    MATH  Google Scholar 

  59. V.N. Gribov: Nucl. Phys. B 139, 1 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  60. F. Gross: ‘Relativistic Nuclear Physics with the Spectator Model’. In: Nuclear and Particle Physics on the Light-Cone, LAMPF Workshop, Los Alamos, ed. by M.B. Johnson, L.S. Kisslinger (World Scientific, Singapore 1989)

    Google Scholar 

  61. A. Hanson, T. Regge, C. Teitelboim: Constrained Hamiltonian Systems (Accademia Nazionale dei Lincei, Rome 1976)

    Google Scholar 

  62. K. Harada, T. Heinzl, C. Stern: Phys. Rev. D 57, 2460 (1998)

    Article  ADS  Google Scholar 

  63. K. Harada, T. Sugihara, M. Taniguchi, M. Yahiro: Phys. Rev. D 49, 4226 (1994)

    Article  ADS  Google Scholar 

  64. T. Hatsuda, T. Kunihiro: Phys. Rep. 247, 221 (1994)

    Article  ADS  Google Scholar 

  65. T. Heinzl: ‘Hamiltonian Formulations of Yang-Mills Quantum Theory and the Gribov Problem’, hep-th/9604018 (1996)

    Google Scholar 

  66. T. Heinzl: Phys. Lett. B 388, 129 (1996)

    Article  ADS  Google Scholar 

  67. T. Heinzl: ‘Light-Cone Dynamics of Particles and Fields’, hep-th/9812190 (1998)

    Google Scholar 

  68. T. Heinzl, S. Krusche, S. Simbürger, E. Werner: Z. Phys. C 56, 415 (1992)

    Article  ADS  Google Scholar 

  69. T. Heinzl, N. Scheu, H. Kröger: ‘Loss of Causality in Discretized Light-Cone Quantization’, hep-th/9908173 (1999)

    Google Scholar 

  70. T. Heinzl, C. Stern, E. Werner, B. Zellermann: Z. Phys. C 72, 353 (1996)

    Article  ADS  Google Scholar 

  71. T. Heinzl, E. Werner: Z. Phys. C 62, 521 (1994)

    Article  ADS  Google Scholar 

  72. S. Hellerman, J. Polchinski: Phys. Rev. D 59, 125002 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  73. B.R. Holstein: ‘Chiral Perturbation Theory: A Primer’, hep-ph/9510344 (1995)

    Google Scholar 

  74. B.R. Holstein: Am. J. Phys. 66, 507 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  75. K. Hornbostel: Phys. Rev. D 45, 3781 (1992)

    Article  ADS  Google Scholar 

  76. K. Hornbostel, S. J. Brodsky, H.-C. Pauli: Phys. Rev. D 37, 2363 (1988)

    Article  ADS  Google Scholar 

  77. K. Itakura, S. Maedan: Phys. Rev. D 61, 045009 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  78. R. Jackiw: ‘Functional Representations for Quantized Fields’. In: Conformal Field Theory, Anomalies, and Superstrings, First Asia Pacific Workshop on High Energy Physics, Singapore 1987, ed. by C.K. Chew et al. (World Scientific, Singapore 1987)

    Google Scholar 

  79. R. Jackiw: ‘(Constrained) Quantisation without Tears’, hep-th/9306075 (1993)

    Google Scholar 

  80. X. Jaen, A. Molina, J. Llosa: ‘Front Form Predictive Mechanics Non-Interaction Theorem’ (LNP 212, Springer, Berlin, Heidelberg, New York 1984)

    Google Scholar 

  81. W. Jaus: Phys. Rev. D 41, 3394 (1990)

    Article  ADS  Google Scholar 

  82. C.-R. Ji, P. Chung, S. Cotanch: Phys. Rev. D 45, 4214 (1992)

    Article  ADS  Google Scholar 

  83. C.-R. Ji, S. Cotanch: Phys. Rev. D 41, 2319 (1990)

    Article  ADS  Google Scholar 

  84. P. Jordan, W. Pauli: Z. Phys. 47, 151 (1928)

    Article  ADS  Google Scholar 

  85. D. Kaplan: ‘Effective field theories’, nucl-th/9506035 (1995)

    Google Scholar 

  86. C. Kiefer, A. Wipf: Ann. Phys. (N.Y.) 236, 241 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  87. S.P. Klevansky: Rev. Mod. Phys. 64, 649 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  88. P. Kroll, M. Raulfs: Phys. Lett. B 387, 848 (1996)

    Article  ADS  Google Scholar 

  89. M. Lavelle, E. Werner, S. Glazek: Few Body Systems, Suppl. 2, 519 (1987)

    Google Scholar 

  90. G. Leibbrandt: Phys. Rev. D 29, 1699 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  91. F. Lenz, M. Thies, K. Yazaki, S. Levit: Ann. Phys. (N.Y.) 208, 1 (1991)

    Article  ADS  Google Scholar 

  92. G. Lepage, S. Brodsky: Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  93. G. Lepage, S. Brodsky, T. Huang, P. Mackenzie: ‚Hadronic Wave Functions in QCD’. In: Proceedings of the Banff Summer Institute, 1981

    Google Scholar 

  94. G.P. Lepage, S. J. Brodsky: Phys. Lett. B 87, 359 (1979)

    Article  ADS  Google Scholar 

  95. G.P. Lepage, S. J. Brodsky: Phys. Rev. Lett. 43, 545 (1979)

    Article  ADS  Google Scholar 

  96. H. Leutwyler: Nuovo Cim. 37, 556 (1965)

    Article  Google Scholar 

  97. H. Leutwyler: Phys. Lett. B 48, 45 (1974)

    Article  ADS  Google Scholar 

  98. H. Leutwyler: Nucl. Phys. B 76, 413 (1974)

    Article  ADS  Google Scholar 

  99. H. Leutwyler, J. Stern: Ann. Phys. (N.Y.) 112, 94 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  100. H.H. Liu, D. E. Soper: Phys. Rev. D 48, 1841 (1993)

    Article  ADS  Google Scholar 

  101. W. Lucha, F. Schöberl, D. Gromes: Phys. Rep. 200, 127 (1991)

    Article  ADS  Google Scholar 

  102. S. Mandelstam: Nucl. Phys. B 213, 149 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  103. A. Manohar: ‘Effective field theories’. In: Perturbative and Nonperturbative Aspects of Quantum Field Theory, ed. by H. Latal, W. Schweiger (LNP 479, Springer, Berlin, Heidelberg, New York 1997)

    Chapter  Google Scholar 

  104. A. Manohar, H. Georgi: Nucl. Phys. B 234, 189 (1984)

    Article  ADS  Google Scholar 

  105. P. Maris, P.C. Tandy: Phys. Rev. C 61, 045202 (2000)

    Article  ADS  Google Scholar 

  106. T. Maskawa, K. Yamawaki: Prog. Theor. Phys. 56, 270 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  107. H. Melosh: Phys.Rev. D 9, 1095 (1974)

    Article  ADS  Google Scholar 

  108. C. Michael, F. Payne: Z. Phys. C 12, 145 (1982)

    Article  ADS  Google Scholar 

  109. S. Mukherjee, R. Nag, S. Sanyal, T. Morii, J. Morishita, M. Tsuge: Phys. Rep. 231, 201 (1993)

    Article  ADS  Google Scholar 

  110. N. Nakanishi, K. Yamawaki: Nucl. Phys. B 122, 15 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  111. Y. Nambu, G. Jona-Lasinio: Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  112. J. Namysłowski: Prog. Part. Nucl. Phys. 14, 49 (1985)

    Article  ADS  Google Scholar 

  113. M. Neubert: Phys. Rep. 245, 259 (1994)

    Article  ADS  Google Scholar 

  114. R. Neville, F. Rohrlich: Nuovo Cim. 1A, 625 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  115. T. Newton, E. Wigner: Rev. Mod. Phys. 21, 400 (1949)

    Article  MATH  ADS  Google Scholar 

  116. L. Parker, G. Schmieg: Am. J. Phys. 38, 218 (1970)

    Article  ADS  Google Scholar 

  117. H.-C. Pauli, S. J. Brodsky: Phys. Rev. D 32, 1993 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  118. H.-C. Pauli, S. J. Brodsky: Phys. Rev. D 32, 2001 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  119. R. Peierls: Proc. Roy. Soc. A 214, 143 (1952)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  120. R.J. Perry: ‘Light-Front Quantum Chromodynamics’, nucl-th/9901080 (1999)

    Google Scholar 

  121. V.Y. Petrov, P. Pobylitsa: ‘Pion Wave Function from the Instanton Vacuum Model’, hep-ph/9712203 (1997)

    Google Scholar 

  122. V.Y. Petrov, M.V. Polyakov, R. Ruskov, C. Weiss, K. Goeke: Phys. Rev. D 59, 114018 (1999)

    Article  ADS  Google Scholar 

  123. A Polyakov.: Gauge Fields and Strings (Harwood Academic, Chur 1987)

    Google Scholar 

  124. E. Prokhvatilov, V. Franke: Sov. J. Nucl. Phys. 47, 559 (1988)

    Google Scholar 

  125. E. Prokhvatilov, V. Franke: Sov. J. Nucl. Phys. 49, 688 (1989)

    Google Scholar 

  126. A.V. Radyushkin: Acta Phys. Polon. B 26, 2067 (1995)

    Google Scholar 

  127. C.D. Roberts, A. G. Williams: Prog. Part. Nucl. Phys. 33, 477 (1994)

    Article  ADS  Google Scholar 

  128. C.D. Roberts, S.M. Schmidt: ‘Dyson-Schwinger Equations: Density, Temperature and Continuum Strong QCD’, nucl-th/0005064 (2000)

    Google Scholar 

  129. F. Rohrlich: Acta Physica Austriaca, Suppl. VIII, 277 (1971)

    Google Scholar 

  130. S. Salmons, P. Grange, E. Werner: Phys. Rev. D 60, 067701 (1999)

    Article  ADS  Google Scholar 

  131. V. Savinov: ‘A Measurement of the Form Factors of Light Pseudoscalar Mesons at a Large Momentum Transfer’, hep-ex/9507005 (1995)

    Google Scholar 

  132. Ç. Şavkl?, F. Tabakin: Nucl. Phys. A 628, 645 (1998)

    Article  ADS  Google Scholar 

  133. N. Scheu: On the Computation of Structure Functions and Mass Spectra in a Relativistic Hamiltonian Formalism: A Lattice Point of View. Ph.D. Thesis, Université Laval, Québec (1997), hep-th/9804190

    Google Scholar 

  134. J. Schwinger: Phys. Rev. 75, 651 (1949)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  135. J. Schwinger: Phys. Rev. 82, 914 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  136. J. Schwinger: Phys. Rev. 91, 713 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  137. J. Schwinger: Phil. Mag. 44, 1171 (1953)

    MATH  MathSciNet  Google Scholar 

  138. M.A. Shifman, A. I. Vainshtein, V. I. Zakharov: Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  139. T. Shigetani, K. Suzuki, H. Toki: Phys. Lett. B 308, 383 (1993)

    Article  ADS  Google Scholar 

  140. S. Sokolov, A. Shatnii: Theor. Math. Phys. 37, 1029 (1979)

    Article  Google Scholar 

  141. P.P. Srivastava, S.J. Brodsky: Phys. Rev. D 61, 025013 (2000)

    Article  ADS  Google Scholar 

  142. C. Stern: Chirale Symmetriebrechung und gebundene Zustände in Lichtkegelquantenfeldtheorien. Ph.D. Thesis, Regensburg (1999)

    Google Scholar 

  143. R. Streater, A. Wightman: PCT, Spin and Statistics, and All That (Benjamin, New York 1963)

    Google Scholar 

  144. K. Sundermeyer: Constrained Dynamics (Springer, Berlin, Heidelberg, New York 1982)

    MATH  Google Scholar 

  145. L. Susskind: ‘Another Conjecture about M(atrix) Theory’, hep-th/9704080 (1997)

    Google Scholar 

  146. G. ’t Hooft: Nucl. Phys. B 75, 461 (1974)

    Article  ADS  Google Scholar 

  147. G. ’t Hooft: ‘Gauge Theory for Strong Interactions’. In: New Phenomena in Subnuclear Physics, Part A, International School of Subnuclear Physics, Erice, Italy, 1975, ed. by A. Zichichi (Plenum, New York 1975)

    Google Scholar 

  148. I. Tamm: J. Phys. (Moscow) 9, 449 (1945)

    Google Scholar 

  149. M. Terent'ev: Sov. J. Nucl. Phys. 24, 106 (1976)

    Google Scholar 

  150. E. Tomboulis: Phys. Rev. D 8, 2736 (1973)

    Article  ADS  Google Scholar 

  151. U. Vogl, W. Weise: Prog. Part. Nucl. Phys. 27, 195 (1991)

    Article  ADS  Google Scholar 

  152. W. Weise: ‘Quarks, Chiral Symmetry and Dynamics of Nuclear Constituents’. In: International Review of Nuclear Physics, Vol.1, Quarks and Nuclei, ed. by W. Weise (World Scientific, Singapore 1984)

    Google Scholar 

  153. K.G. Wilson, T.S. Walhout, A. Harindranath, W.-M. Zhang, R.J. Perry, S.D. Glazek: Phys. Rev. D 49, 6720 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  154. E. Witten: Nucl. Phys. B 145, 110 (1978)

    Article  ADS  Google Scholar 

  155. R.S. Wittman: ‘Symmetry Breaking in the (ϕ4)2 Theory and the Light-Front Vacuum’. In: Nuclear and Particle Physics on the Light-Cone, LAMPF Workshop, Los Alamos, 1988, ed. by M.B. Johnson, L.S. Kisslinger (World Scientific, Singapore 1989)

    Google Scholar 

  156. T.T. Wu: Phys. Lett. B 71, 142 (1977)

    Article  ADS  Google Scholar 

  157. F. Yndurain: Relativistic Quantum Mechanics and Introduction to Field Theory (Springer, Berlin, Heidelberg, New York 1996)

    MATH  Google Scholar 

  158. A. Zhitnitsky: Sov. J. Nucl. Phys. 43, 999 (1986)

    Google Scholar 

  159. J. Zinn-Justin: Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford 1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heinzl, T. (2001). Light-Cone Quantization: Foundations and Applications. In: Latal, H., Schweiger, W. (eds) Methods of Quantization. Lecture Notes in Physics, vol 572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45114-5_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45114-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42100-9

  • Online ISBN: 978-3-540-45114-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics