Abstract
This paper introduces a modified PSO, Non-dominated Sorting Particle Swarm Optimizer (NSPSO), for better multiobjective optimization. NSPSO extends the basic form of PSO by making a better use of particles’ personal bests and offspring for more effective nondomination comparisons. Instead of a single comparison between a particle’s personal best and its offspring, NSPSO compares all particles’ personal bests and their offspring in the entire population. This proves to be effective in providing an appropriate selection pressure to propel the swarm population towards the Pareto-optimal front. By using the non-dominated sorting concept and two parameter-free niching methods, NSPSO and its variants have shown remarkable performance against a set of well-known difficult test functions (ZDT series). Our results and comparison with NSGA II show that NSPSO is highly competitive with existing evolutionary and PSO multiobjective algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zitzler, E., Deb, K. and Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, April (2000).
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Chichester, UK (2001).
Kennedy, J. and Eberhart, R.: Particle Swarm Optimization. In Proceedings of the Fourth IEEE International Conference on Neural Networks, Perth, Australia. IEEE Service Center (1995) 1942–1948.
Coello, C.A.C. and Lechuga, M.S.: MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization, in Proceedings of Congress on Evolutionary Computation (CEC’2002), Vol. 2, IEEE Press (2002) 1051–1056.
Hu, X. and Eberhart, R.: Multiobjective Optimization Using Dynamic Neighbour-hood Particle Swarm Optimization. In Proceedings of the IEEE World Congress on Computational Intelligence, Hawaii, May 12–17, 2002. IEEE Press (2002).
Parsopoulos, K.E. and Vrahatis, M.N.: Particle Swarm Optimization Method in Multiobjective Problems, in Proceedings of the 2002 ACM Symposium on Applied Computing (SAC’2002) (2002) 603–607.
Fieldsend, E. and Singh, S.: A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and Turbulence, Proceedings of the 2002 U.K. Workshop on Computational Intelligence, Birmingham, UK (2002) 37–44.
Horn, J., Nafpliotis, N., and Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol: 1, Piscataway, New Jersey. IEEE Service Center. (1994) 82–87.
Deb, K., Agrawal, S. Pratap, A. and Meyarivan, T.: A Fast Elitist NonDominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In Proceedings of Parallel Problem Solving from Nature — PPSN VI, Springer (2000) 849–858.
Goldberg, D.E., and Richardson, J.J.: Genetic Algorithms with sharing for multimodal function optimization. Genetic Algorithms and Their Applications: Proceedings of the Second ICGA, Lawrence Erlbaum Associates, Hillsdale, NJ, (1987) 41–49.
Fonseca, C.M. and Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms (1993) 355–365.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, X. (2003). A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_4
Download citation
DOI: https://doi.org/10.1007/3-540-45105-6_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40602-0
Online ISBN: 978-3-540-45105-1
eBook Packages: Springer Book Archive