Skip to main content

A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization

  • Conference paper
  • First Online:
Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2723))

Included in the following conference series:

Abstract

This paper introduces a modified PSO, Non-dominated Sorting Particle Swarm Optimizer (NSPSO), for better multiobjective optimization. NSPSO extends the basic form of PSO by making a better use of particles’ personal bests and offspring for more effective nondomination comparisons. Instead of a single comparison between a particle’s personal best and its offspring, NSPSO compares all particles’ personal bests and their offspring in the entire population. This proves to be effective in providing an appropriate selection pressure to propel the swarm population towards the Pareto-optimal front. By using the non-dominated sorting concept and two parameter-free niching methods, NSPSO and its variants have shown remarkable performance against a set of well-known difficult test functions (ZDT series). Our results and comparison with NSGA II show that NSPSO is highly competitive with existing evolutionary and PSO multiobjective algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zitzler, E., Deb, K. and Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, April (2000).

    Article  Google Scholar 

  2. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Chichester, UK (2001).

    MATH  Google Scholar 

  3. Kennedy, J. and Eberhart, R.: Particle Swarm Optimization. In Proceedings of the Fourth IEEE International Conference on Neural Networks, Perth, Australia. IEEE Service Center (1995) 1942–1948.

    Google Scholar 

  4. Coello, C.A.C. and Lechuga, M.S.: MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization, in Proceedings of Congress on Evolutionary Computation (CEC’2002), Vol. 2, IEEE Press (2002) 1051–1056.

    Google Scholar 

  5. Hu, X. and Eberhart, R.: Multiobjective Optimization Using Dynamic Neighbour-hood Particle Swarm Optimization. In Proceedings of the IEEE World Congress on Computational Intelligence, Hawaii, May 12–17, 2002. IEEE Press (2002).

    Google Scholar 

  6. Parsopoulos, K.E. and Vrahatis, M.N.: Particle Swarm Optimization Method in Multiobjective Problems, in Proceedings of the 2002 ACM Symposium on Applied Computing (SAC’2002) (2002) 603–607.

    Google Scholar 

  7. Fieldsend, E. and Singh, S.: A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and Turbulence, Proceedings of the 2002 U.K. Workshop on Computational Intelligence, Birmingham, UK (2002) 37–44.

    Google Scholar 

  8. Horn, J., Nafpliotis, N., and Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol: 1, Piscataway, New Jersey. IEEE Service Center. (1994) 82–87.

    Article  Google Scholar 

  9. Deb, K., Agrawal, S. Pratap, A. and Meyarivan, T.: A Fast Elitist NonDominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In Proceedings of Parallel Problem Solving from Nature — PPSN VI, Springer (2000) 849–858.

    Google Scholar 

  10. Goldberg, D.E., and Richardson, J.J.: Genetic Algorithms with sharing for multimodal function optimization. Genetic Algorithms and Their Applications: Proceedings of the Second ICGA, Lawrence Erlbaum Associates, Hillsdale, NJ, (1987) 41–49.

    Google Scholar 

  11. Fonseca, C.M. and Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms (1993) 355–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, X. (2003). A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45105-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40602-0

  • Online ISBN: 978-3-540-45105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics