Advertisement

Segmentation of Laparoscopic Images for Computer Assisted Surgery

  • Jonathan Boisvert
  • Farida Cheriet
  • Guy Grimard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)

Abstract

This paper presents a learning-based approach to the problem of segmentation of laparoscopic images. The first step of the proposed method is to preprocess input images with a homomorphic filter. An initial segmentation map is then computed using a region growing based image segmentation algorithm. The obtained regions are finally classified using a support vector machine (SVM) to produce the final segmentation. The preliminary results computed on two image sets were promising. The first set includes laparoscopic images recorded in a controlled environment. The second set includes laparoscopic images recorded during three disk removal surgeries performed laparoscopically at Sainte-Justine Hospital.

References

  1. 1.
    Kuhnapfel, U., Cakmak, H., Maass, H.: Endoscopic surgery training using virtual reality and deformable tissue simulation. Computers & Graphics UK 24 (2000) 671–682CrossRefGoogle Scholar
  2. 2.
    Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation stéphane cotin, hervé delingette, and nicholas ayache. IEEE Trans. on Visualization and Computer Graphics 5 (1999) 62–73CrossRefGoogle Scholar
  3. 3.
    Basdogan, C, Ho, C, Srinivasan, M.: Simulation of tissue cutting and bleeding for laparoscopic surgery using auxiliary surfaces. In: Proc. Medicine Meets Virtual Reality, IOS Press (1999) 38–44Google Scholar
  4. 4.
    Dey, D., Gobbi, D., Slomka, P., Surry, K., Peter, T.: Automatic fusion of freehand endoscopic brain images to threedimensional surfaces: Creating stereoscopic panoramas. IEEE Trans. on Medical Imaging 21 (2002) 23–30CrossRefGoogle Scholar
  5. 5.
    Bricault, I., Ferretti, G., Cinquin, P.: Registration of real and ct-derived virtual bronchoscopic images to assist transbronchial biopsy. IEEE Trans. on Medical Imaging 17 (2002) 703–714CrossRefGoogle Scholar
  6. 6.
    Lunn, K., Hartov, A., Roberts, D., Sun, H., Paulsen, K.: Extracting displacement data from coregistered ultrasound for brain modeling. In: Proc. of the SPIE Medical Imaging. (2002)Google Scholar
  7. 7.
    Wei, G., Arbter, K., Hirzinger, G.: Real-time visual servoing for laparoscopic surgery. controlling robot motion with color image segmentation. IEEE Engineering in Medicine and Biology Magazine 16 (1997) 40–45CrossRefGoogle Scholar
  8. 8.
    Zhang, X., Payandeh, S.: Application of visual tracking for robot-assisted laparoscopic surgery. Journal of Robotic Systems 19 (2002) 315–328zbMATHCrossRefGoogle Scholar
  9. 9.
    Gonzalez, R., Woods, R.: Digital Image Processing. Prentice Hall (2002)Google Scholar
  10. 10.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22 (1997) 61–79zbMATHCrossRefGoogle Scholar
  11. 11.
    Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. on Pattern Analysis and Machine Intelligence 23 (2001) 800–810CrossRefGoogle Scholar
  12. 12.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer-Verlag (1995)Google Scholar
  13. 13.
    Chapelle, O., Haffner, P., Vapnick, V.: Support vector machines for histogram-based classification. IEEE Trans. on Neural Networks 10 (1995) 1055–1064CrossRefGoogle Scholar
  14. 14.
    Tsutsumi, F., Nakajima, C: Hybrid approach of video indexing and machine learning for rapid indexing and highly precise object recognition. In: Proc. ICIP. Volume 2. (2001) 645–648Google Scholar
  15. 15.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Information Theory 8 (1962) 179–187Google Scholar
  16. 16.
    Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C: Image inpainting. In: Siggraph 2000, Computer Graphics Proceedings, ACM Press / ACM SIGGRAPH / Addison Wesley Longman (2000) 417–424Google Scholar
  17. 17.
    Ballester, C, Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and grey levels. IEEE Trans. on Image Processing 10 (2000) 1200–1211CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jonathan Boisvert
    • 1
  • Farida Cheriet
    • 1
  • Guy Grimard
    • 2
  1. 1.École Polytechnique de MontréalMontréalCanada
  2. 2.Hôpital Sainte-JustineMontréalCanada

Personalised recommendations