Estimating Motion in Ultrasound Images of the Small Bowel: Optical Flow without Image Structure

  • David H. Cooper
  • Bo René Madsen
  • Jim Graham
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)


Measurement of motion in transabdominal ultrasound sequences of the small bowel is hampered by the unstructured, textured appearance of the images. We investigate a method of measuring Optical Flow in the sequences, based on an analysis of the spatio-temporal frequency spectrum. The method requires no unrealistic assumptions about the distribution of energy in the frequency spectrum and extends readily to deal with the aperture problem. Evaluation on synthetic image sequences indicates it has advantages in accuracy and precision of velocity estimates. Qualitative evaluation on real ultrasound sequences indicate encouraging performance, provided occurrence of the aperture problem is identified and appropriate processing applied.


Local Search Optical Flow Ultrasound Image Synthetic Image Direct Search Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Ullman, The interpretation of visual motion. Cambridge, MA: MIT Press, 1979.Google Scholar
  2. 2.
    A. Singh and P. Allen, “Image flow computation: an estimation-theoretic framework and a unified perspective”, CVGIP-Image Understanding, 56, 152–177, 1992.zbMATHCrossRefGoogle Scholar
  3. 3.
    G. Mailloux, A. Bleau, M. Bertrand and R. Peticlerc, “Computer analysis of heart motion from two-dimensional echocardiograms”, IEEE Transactions on Biomedical Engineering, 34, 356–364, 1987.CrossRefGoogle Scholar
  4. 4.
    B. Horn and B. Schunk, “Determining optical flow”, Artificial Intelligence, 17, 185–203, 1981.CrossRefGoogle Scholar
  5. 5.
    B. Horn and B. Schunk, “Determining optical flow-a retrospective”, Artificial Intelligence, 59, 81–87, 1993.CrossRefGoogle Scholar
  6. 6.
    A. Verri, F. Girosi and V. Torre, “Differential techniques for optical flow”, Journal of the Optical Society of America. A, 912–922, 1990.Google Scholar
  7. 7.
    P. Baraldi, A. Sarti, et al., “Evaluation of differential optical flow techniques on synthesised echo images”, IEEE Transactions on Biomedical Engineering, 43, 259–272, 1996.CrossRefGoogle Scholar
  8. 8.
    D. J. Heeger, “Optical flow using spatio-temporal filters”, Int.J. Computer Vision, 1, 279–302, 1988.CrossRefGoogle Scholar
  9. 9.
    J. Bigün, G. H. Granlund and J. Wiklund, “Multidimensional orientation estimation with application to texture analysis and optical flow”, IEEE Trans. PAMI, 13, 775–790, 1991.Google Scholar
  10. 10.
    D. J. Fleet and A. D. Jepson, “Computation of component image velocity from local phase information”, Int. J. Computer Vision, 5, 77–104, 1990.CrossRefGoogle Scholar
  11. 11.
    H. Liu, T.-H. Hong, M. Herman and R. Chellapa, “Accuracy vs. efficiency tradeoffs in optical flow algorithms”, proc. European Conference on Computer Vision, Cambridge, U.K., 1996, pp. 174–183.Google Scholar
  12. 12.
    D. H. Cooper, “Methods for Motion Estimation in Medical Ultrasound Imaging”, University of Manchester, Ph.D. Thesis, 2000.Google Scholar
  13. 13.
    J. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of Optical Flow Techniques”, Int. J. Comput. Vis., 12, 43–47, 1994.CrossRefGoogle Scholar
  14. 14.
    D. H. Cooper and J. Graham, “Estimating motion in noisy, textured images: Optical flow in medical ultrasound”, proc. British Machine Vision Conference, Edinburgh, Scotland, 1996, pp. 585–594.Google Scholar
  15. 15.
    R. N. Bracewell, The Fourier Transform and its Applications, 2 ed: McGraw-Hill, 1986.Google Scholar
  16. 16.
    W. H. Press, S. A. Teukolsky, W. T. Vettering and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2 ed: Cambridge University Press, 1992.Google Scholar
  17. 17.
    B. McCane, K. Novins, D. Crannitch and B. Galvin, “On benchmarking optical Flow”, Comput. Vis. Image Underst., 84, 126–143, 2001.zbMATHCrossRefGoogle Scholar
  18. 18.
    M. J. Black and P. Anandan, “The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields”, Comput. Vis. Image Underst., 63, 75–104, 1996.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • David H. Cooper
    • 1
  • Bo René Madsen
    • 1
  • Jim Graham
    • 1
  1. 1.Imaging Science and Biomedical EngineeringUniversity of ManchesterManchesterUK

Personalised recommendations