Advertisement

Some Issues of Biological Shape Modelling with Applications

  • Rasmus Larsen
  • Klaus Baggesen Hilger
  • Karl Skoglund
  • Sune Darkner
  • Rasmus R. Paulsen
  • Mikkel B. Stegmann
  • Brian Lading
  • Hans Henrik Thodberg
  • Hrafnkell Eiriksson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)

Abstract

This paper illustrates current research at Informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations to, modifications to, and applications of the elements of constructing models of shape or appearance. These elements are correspondence analysis, analysis and decomposition of variability, alignment, and visualisation.

References

  1. 1.
    R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J. Taylor, “A minimum description length approach to statistical shape modeling,” Medical Imaging, IEEE Transactions on, vol. 21, no. 5, pp. 525–537, 2002.CrossRefGoogle Scholar
  2. 2.
    P. J. Besl and N. D. McKay, “A method for registration of 3d shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, 1992.Google Scholar
  3. 3.
    J. C. Gower, “Generalized Procrustes analysis,” Psychometrika, vol. 40, pp. 33–50, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    C. Goodall, “Procrustes methods in the statistical analysis of shape,” Journal of the Royal Statistical Society, Series B, vol. 53, no. 2, pp. 285–339, 1991.zbMATHMathSciNetGoogle Scholar
  5. 5.
    T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape models — their training and application,” Computer Vision, Graphics and Image Processing, vol. 61, pp. 38–59, Jan. 1995.CrossRefGoogle Scholar
  6. 6.
    H. Hotelling, “Relations between two sets of variables,” Biometrika, vol. 28, pp. 321–377, 1936.zbMATHGoogle Scholar
  7. 7.
    A. Höskuldsson, “PLS regression methods,” Jour. of Chemometrics, vol. 2, pp. 211–228, 1986.CrossRefGoogle Scholar
  8. 8.
    T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” IEEE Trans. on Pattern Recognition and Machine Intelligence, vol. 23, no. 6, pp. 681–685, 2001.CrossRefGoogle Scholar
  9. 9.
    C. B. H. Wolstenholme and C. J. Taylor, “Wavelet compression of active appearance models,” in Medical Image Computing and Computer-Assisted Intervention, MICCAI, pp. 544–554, 1999.Google Scholar
  10. 10.
    D. Donoho, “Wedgelets: Nearly minimax estimation of edges,” Annals of Statistics, vol. 27, pp. 859–897, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    X. Huo and D. Donoho, “Beamlets and multiscale image analysis,” in Multiscale and Multiresolution Methods (J. Barth, T. Chan, and R. Haimes, eds.), Lecture Notes in Computational Science and Engineering, pp. 149–196, Springer, 2001.Google Scholar
  12. 12.
    T. J. Hutton, B. R. Buxton, and P. Hammond, “Dense surface point distribution models of the human face,” Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001), pp. 153–60, 2001.Google Scholar
  13. 13.
    V. Blanz and T. Vetter, “A morphable model for the synthesis of 3D faces,” in Proceedings of SIGGRAPH 99: 26th International Conference on Computer Graphics and Interactive Techniques, pp. 187–194, ACM, 1999.Google Scholar
  14. 14.
    R. R. Paulsen, R. Larsen, S. Laugesen, C. Nielsen, and B. K. Ersbøll, “Building and testing a statistical shape model of the human ear canal,” in Medical Image Computing and Computer-Assisted Intervention-MICCAI, pp. 373–380, Springer, 2002.Google Scholar
  15. 15.
    R. R. Paulsen and K. B. Hilger, “Shape modelling using markov random field restoration of point correspondences (to appear),” in Information Processing in Medical Imaging, IPMI, 2003.Google Scholar
  16. 16.
    F. Er, Robust methods in Statistical Shape Analysis. PhD thesis, University of Leeds, Department of Statistics, Leeds, UK, 1998. x + 86 pp.Google Scholar
  17. 17.
    P. R. Andresen and M. Nielsen, “Non-rigid registration by geometry-constrained diffusion,” Medical Image Analysis, vol. 5, no. 2, pp. 81–88, 2001.CrossRefGoogle Scholar
  18. 18.
    K. B. Hilger, Exploratory Analysis of Multivariate Data. PhD thesis, Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2001.Google Scholar
  19. 19.
    I. E. Frank and J. H. Friedman, “A statistical view of some chemometrics regression tools,” Technometrics, vol. 35, no. 2, pp. 109–135, 1993.zbMATHCrossRefGoogle Scholar
  20. 20.
    P. R. Andresen, F. L. Bookstein, K. Conradsen, B. K. Ersbøll, J. Marsh, and S. Kreiborg, “Surface-bounded growth modeling applied to human mandibles,” IEEE Transactions on Medical Imaging, vol. 19, pp. 1053–1063, dec 2000.CrossRefGoogle Scholar
  21. 21.
    A. Björk and V. Skieller, “Normal and abnormal growth of the mandible. A synthesis of longitudinal cephalometric implant studies over a period of 25 years,” Eur. J. Orthodontics, vol. 5, pp. 1–46, 1983.Google Scholar
  22. 22.
    M. B. Stegmann, S. Forchhammer, and T. F. Cootes, “Wavelet enhanced apperance modelling,” in The British Machine Vision Conference — BMVC, 2003 (submitted).Google Scholar
  23. 23.
    M. B. Stegmann and H. B. Larsson, “Motion-compensation of cardiac perfusion MRI using a statistical texture ensemble,” in Functional Imaging and Modeling of the Heart, FIMH 2003, LNCS, (Lyon, France), Springer, 2003 (to appear).Google Scholar
  24. 24.
    M. B. Stegmann and H. B. W. Larsson, “Fast registration of cardiac perfusion MRI,” in Proc. International Society of Magnetic Resonance In Medicine — ISMRM 2003, Toronto, Ontario, Canada, (Berkeley, CA, USA), ISMRM, 2003 (to appear).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rasmus Larsen
    • 1
  • Klaus Baggesen Hilger
    • 1
  • Karl Skoglund
    • 1
  • Sune Darkner
    • 1
  • Rasmus R. Paulsen
    • 1
  • Mikkel B. Stegmann
    • 1
  • Brian Lading
    • 1
  • Hans Henrik Thodberg
    • 1
  • Hrafnkell Eiriksson
    • 1
  1. 1.Informatics and Mathematical ModellingTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations