Advertisement

Segmentation of Cell Nuclei in Tissue by Combining Seeded Watersheds with Gradient Information

  • Carolina Wählby
  • Ewert Bengtsson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)

Abstract

This paper deals with the segmentation of cell nuclei in tissue. We present a region-based segmentation method where seeds representing object- and background-pixels are created by morphological filtering. The seeds are then used as a starting-point for watershed segmentation of the gradient magnitude of the original image. Over-segmented objects are thereafter merged based on the gradient magnitude between the adjacent objects. The method was tested on a total of 726 cell nuclei in 7 images, and 95% correct segmentation was achieved.

References

  1. 1.
    J. A. M. Beliën, H. A. H. M. van Ginkel, P. Tekola, L. S. Ploeger, N. M. Poulin, J. P. A. Baak, and P. J. van Diest. Confocal DNA cytometry: A contour-based segmentation algorithm for automated three-dimensional image segmentation. Cytometry, 49:12–21, 2002.CrossRefGoogle Scholar
  2. 2.
    S. Beucher. The watershed transformation applied to image segmentation. Scanning Microscopy, 6:299–314, 1992.Google Scholar
  3. 3.
    S. Beucher and C. Lantuéjoul. Use of watersheds in contour detection. In International workshop on image processing: Real-time and Motion detection/estimation, Rennes, France, September 1979.Google Scholar
  4. 4.
    R. C. Gonzales and R. E. Woods. Digital Image Processing. Addison-Wesley, Reading, 1993.Google Scholar
  5. 5.
    N. Malpica, C. Ortiz de Solorzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. Garcia-Sagredo, and F. del Pozo. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry, 28(4):289–297, 1997.CrossRefGoogle Scholar
  6. 6.
    F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Comm. and Image Representation, 1(1):21–46, 1990.CrossRefGoogle Scholar
  7. 7.
    P. Ranefall, B. N. L. Egevad, and E. Bengtsson. A new method for segmentation of color images applied to immunohistochemically stained cell nuclei. Analytical Cellular Pathology, 15:145–156, 1997.Google Scholar
  8. 8.
    P. Soille. Morphological Image Analysis: Principles and Applications. Springer-Verlag, 1999.Google Scholar
  9. 9.
    P. S. Umesh Adiga and B. B. Chaudhuri. An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images. Pattern Recognition, 34:1449–1458, 2001.zbMATHCrossRefGoogle Scholar
  10. 10.
    L. Vincent. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Transactions on Image Processing, 2(2): 176–201, 1993.CrossRefGoogle Scholar
  11. 11.
    L. Vincent and P. Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6):583–597, 1991.CrossRefGoogle Scholar
  12. 12.
    C. Wählby, F. Erlandsson, K. Nyberg, J. Lindblad, A. Zetterberg, and E. Bengtsson. Multiple tissue antigen analysis by sequential immunofluorescence staining and multidimensional image analysis. In Proceedings of the 12th Scandinavian Conference on Image Analysis (SCIA), pages 25–31, Bergen, Norway, June 2001.Google Scholar
  13. 13.
    C. Wählby, J. Lindblad, M. Vondrus, E. Bengtsson, and L. Björkesten. Algorithms for cytoplasm segmentation of fluorescence labelled cells. Analytical Cellular Pathology, 24:101–111, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Carolina Wählby
    • 1
  • Ewert Bengtsson
    • 1
  1. 1.Centre for Image AnalysisUppsala UniversityUppsalaSweden

Personalised recommendations