Robust Curve Detection Using a Radon Transform in Orientation Space

  • M. van Ginkel
  • M. A. Kraaijveld
  • L. J. van Vliet
  • E. P. Reding
  • P. W. Verbeek
  • H. J. Lammers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)

Abstract

We present a novel approach to parameterised curve detection. The method is based on the generalised Radon transform, which is traditionally applied to a 2D edge/line map. The novelty of our method is the mapping of the original 2D image to a 3D orientation space, which then forms the input for the Radon transform. The orientation space representation can represent multiple intersecting structures and contains local orientation information. We demonstrate our approach on a problem in geology and show that we can detect curves in a heterogeneous and noisy background.

Keywords

Bedding Plane Template Match Complex Background Orientation Space Radon Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.S. Aguado, E. Montiel, and M.S. Nixon. Bias error analysis of the generalised Hough transform. Journal of Mathematical Imaging and Vision, 12(1):25–42, 2000.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D.H. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13(2):111–122, 1981.MATHCrossRefGoogle Scholar
  3. 3.
    S.R. Deans. Hough transform from the Radon transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(2):185–188, March 1981.CrossRefGoogle Scholar
  4. 4.
    W.T. Freeman and E.H. Adelson. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–906, 1991.CrossRefGoogle Scholar
  5. 5.
    I.M. Gel’fand, M.I. Graev, and N.Ya. Vilenkin. Generalized Functions. Volume 5, Integral Geometry and Representation Theory. Academic Press, 1966.Google Scholar
  6. 6.
    M. van Ginkel. Image Analysis using Orientation Space based on Steerable Filters. PhD thesis, Delft University of Technology, Delft, The Netherlands, 2002. http://www.ph.tn.tudelft.nl/PHDTheses/MvGinkel/thesisvanginkel.html.Google Scholar
  7. 7.
    P.V.C. Hough. Method and means for recognizing complex patterns. US patent nr. 3069654, 1962.Google Scholar
  8. 8.
    H. Knutsson and G. H. Granlund. Fourier domain design of line and edge detectors. In Proceedings of the 5th International Conference on Pattern Recognition, Miami, Florida, December 1980.Google Scholar
  9. 9.
    H. Knutsson, R. Wilson, and G.H. Granlund. Anisotropic non-stationary image estimation and its applications–Part I: Restoration of noisy images. IEEE Transactions on Communications, 31(3):388–397, March 1983.CrossRefGoogle Scholar
  10. 10.
    J. Radon. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften, Leipzig, Mathematisch-Physikalische Klasse, 69:262–277, 1917.Google Scholar
  11. 11.
    J. Sklansky. On the Hough technique for curve detection. IEEE Transactions on Computers, 27(10):923–926, October 1978.MATHCrossRefGoogle Scholar
  12. 12.
    G.C. Stockman and A.K. Agrawala. Equivalence of Hough curve detection to template matching. Communications of the ACM, 20(11):820–822, 1977.MATHCrossRefGoogle Scholar
  13. 13.
    D. Walters. Selection of image primitives for general-purpose visual processing. Computer Vision, Graphics, and Image Processing, 37:261–298, 1987.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. van Ginkel
    • 1
  • M. A. Kraaijveld
    • 2
  • L. J. van Vliet
    • 1
  • E. P. Reding
    • 2
  • P. W. Verbeek
    • 1
  • H. J. Lammers
    • 2
  1. 1.Pattern Recognition GroupDelft University of TechnologyDelftThe Netherlands
  2. 2.Shell International E&PTechnology Applications and ResearchRijswijkThe Netherlands

Personalised recommendations