Advertisement

Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map

  • Markus Turtinen
  • Topi Mäenpää
  • Matti Pietikäinen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)

Abstract

This paper deals with the combined use of Local Binary Pattern (LBP) features and a Self-Organizing Map (SOM) in texture classification. With this approach, the unsupervised learning and visualization capabilities of a SOM are utilized with highly efficient histogram-based texture features. In addition to the Euclidean distance normally used with a SOM, an information theoretic log-likelihood (cumlog) dissimilarity measure is also used for determining distances between feature histograms. The performance of the approach is empirically evaluated with two different data sets: (1) a texture-based visual inspection problem containing four very similar paper classes, and (2) classification of 24 different natural textures from the Outex database.

Keywords

Local Binary Pattern Texture Classification Dissimilarity Measure Local Binary Pattern Feature Local Binary Pattern Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Niskanen, M., Silvén, O., Kauppinen, H.: Color and texture based wood inspection with non-supervised clustering. In: SCIA 2001-12th Scandinavian Conference on Image Analysis, Bergen, Norway (2001)Google Scholar
  2. 2.
    Kohonen, T.: Self-Organizing Maps. Springer-Verlag, Berlin, Germany (1997)zbMATHGoogle Scholar
  3. 3.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (2002) 971–987CrossRefGoogle Scholar
  4. 4.
    Turtinen, M., Pietikäinen, M., Silvén, O., Mäenpää, T., Niskanen, M.: Texture-based paper characterization using non-supervised clustering. In: Accepted to QCAV 2003-6th International Conference on Quality Control by Artificial Vision, Gatlinburg, Tennessee, USA (2003)Google Scholar
  5. 5.
    Puzicha, J., Buhmann, J., Rubner, Y., Tomasi, C.: Empirical evaluation of dissimilarity for color and texture. In: The 7th IEEE International Conference on Computer Vision, Kerkyra, Greece (1999)Google Scholar
  6. 6.
    Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex-new framework for empirical evaluation of texture analysis algorithms. In: Proc. 16th International Conference on Pattern Recognition. Volume 1., Quebec, Canada (2002) 701–706Google Scholar
  7. 7.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29 (1996) 51–59CrossRefGoogle Scholar
  8. 8.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley & Sons Inc. (2001) 2 ed.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Markus Turtinen
    • 1
  • Topi Mäenpää
    • 1
  • Matti Pietikäinen
    • 1
  1. 1.Machine Vision GroupUniversity of OuluFinland

Personalised recommendations