Using Optical Flow as Evidence for Probabilistic Tracking

  • M. J. Lucena
  • J. M. Fuertes
  • N. Perez de la Blanca
  • A. Garrido
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)


In this paper, we present an observation model based on the Lucas and Kanade algorithm for computing optical flow, to track objects using particle filter algorithms. Although optical flow information enables us to know the displacement of objects present in a scene, it cannot be used directly to displace an object model since flow calculation techniques lack the necessary precision. In view of the fact that probabilistic tracking algorithms enable imprecise or incomplete information to be handled naturally, this model has been used as a natural means of incorporating flow information into the tracking.


  1. 1.
    R.E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME-Journal of Basic Engineering, vol. 82, no. Series D, pp. 35–45, 1960.Google Scholar
  2. 2.
    M. Isard and A. Blake, “Condensation — conditional density propagation for visual tracking,” International Journal on Computer Vision, 1998.Google Scholar
  3. 3.
    J. Deutscher, A. Blake, B. North, and B. Bascle, “Tracking through singularities and discontinuities by random sampling,” in Proceedings of International Conference on Computer Vision, 1999, vol. 2, pp. 1144–1149.CrossRefGoogle Scholar
  4. 4.
    J. Sullivan, A. Blake, M. Isard, and J. MacCormick, “Bayesian object localisation in images,” International Journal of Computer Vision, vol. 44, no. 2, pp. 111–135, 2001.zbMATHCrossRefGoogle Scholar
  5. 5.
    A. Blake and M. Isard, Active Contours, Springer, 1998.Google Scholar
  6. 6.
    A. Gelfand and A. Smith, “Sampling-based approaches to computing marginal densities,” Journal of the American Statistical Association, vol. 85, no. 410, pp. 398–409, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Isard and A. Blake, “Contour tracking by stochastic propagation of conditional density,” in Proceedings of European Conference on Computer Vision, Cambridge, UK, 1996, pp. 343–356.Google Scholar
  8. 8.
    J. Deutscher, A. Blake, and I. Reid, “Articulated body motion capture by annealed particle filtering,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2000.Google Scholar
  9. 9.
    B. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in Proceedings of DARPA IU Workshop, 1981, pp. 121–130.Google Scholar
  10. 10.
    W. H. Press, S. A. Teulosky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, Second Edition, Cambridge University Press, 1992.Google Scholar
  11. 11.
    A. Blake, M. Isard, and D. Reynard, “Learning to track the visual motion of contours,” Journal of Artificial Intelligence, vol. 78, pp. 101–134, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. J. Lucena
    • 1
  • J. M. Fuertes
    • 1
  • N. Perez de la Blanca
    • 2
  • A. Garrido
    • 2
  1. 1.Departamento de Informatica, Escuela Politecnica SuperiorUniversidad de JaenJaenSpain
  2. 2.Departamento de Ciencias de la Computacion e Inteligencia Artificial, ETSIIUniversidad de GranadaGranadaSpain

Personalised recommendations