Probabilistic Generative Modelling

  • Rasmus Larsen
  • Klaus Baggesen Hilger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)


The contribution of this paper is the adaption of data driven methods for decomposition of tangent shape variability proposed in a probabilistic framework. By Bayesian model selection we compare two generative model representations derived by principal components analysis and by maximum autocorrelation factors analysis.


Principal Component Analysis Independent Component Analysis Active Appearance Model Bayesian Model Selection Medical Image Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. F. Cootes, G. J. Taylor, D. H. Cooper, and J. Graham, “Training models of shape from sets of examples,” in British Machine Vision Conference: Selected Papers 1992, (Berlin), Springer-Verlag, 1992.Google Scholar
  2. 2.
    P. Switzer, “Min/max autocorrelation factors for multivariate spatial imagery,” in Computer Science and Statistics (L. Billard, ed.), pp. 13–16, Elsevier Science Publishers B.V. (North Holland), 1985.Google Scholar
  3. 3.
    R. Larsen, H. Eiriksson, and M. B. Stegmann, “Q-MAF shape decomposition,” in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2001, 4th International Conference, Utrecht, The Netherlands, vol. 2208 of Lecture Notes in Computer Science, pp. 837–844, Springer, 2001.Google Scholar
  4. 4.
    A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A transformation for ordering multispectral data in terms of image quality with implications for noise removal,” IEEE Transactions on Geoscience and Remote Sensing, vol. 26, pp. 65–74, Jan. 1988.CrossRefGoogle Scholar
  5. 5.
    K. B. Hilger, M. B. Stegmann, and R. Larsen, “A noise robust statistical texture model,” in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2002, 5th International Conference, Tokyo, Japan, 2002. 8 pp. (submitted).Google Scholar
  6. 6.
    T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” in Proceedings of the European Conf. On Computer Vision, pp. 484–498, Springer, 1998.Google Scholar
  7. 7.
    K. B. Hilger, A. A. Nielsen, and R. Larsen, “A scheme for initial exploratory data analysis of multivariate image data,” in Proceedings of the Scandinavian Image Analysis Conference, SCIA’01, Bergen, Norway, 11–14 June 2001, 2001. pp. 717–724.Google Scholar
  8. 8.
    F. L. Bookstein, Morphometric tools for landmark data. Cambridge University Press, 1991. 435 pp.Google Scholar
  9. 9.
    J. C. Gower, “Generalized Procrustes analysis,” Psychometrika, vol. 40, pp. 33–50, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    C. Goodall, “Procrustes methods in the statistical analysis of shape,” Journal of the Royal Statistical Society, Series B, vol. 53, no. 2, pp. 285–339, 1991.zbMATHMathSciNetGoogle Scholar
  11. 11.
    I. L. Dryden and K. Mardia, Statistical Shape Analysis. Chichester: John Wiley & Sons, 1998. xx + 347 pp.zbMATHGoogle Scholar
  12. 12.
    L. Molgedey and H. G. Schuster, “Separation of a mixture of independent signals using time delayed correlations,” Physical Review Letters, vol. 72, no. 23, pp. 3634–3637, 1994.CrossRefGoogle Scholar
  13. 13.
    T. Kolenda, L. K. Hansen, and J. Larsen, “Signal detection using ica: Application to chat room topic spotting,” in Proceedings of the 3rd International Conference on Independent Components Analysis and Blind Signal Separation (ICA’2001), San Diego, USA, December 9–13 (Lee, Jung, Makeig, and Sejnowski, eds.), 2001.Google Scholar
  14. 14.
    T. P. Minka, “Automatic choice of dimensionality of PCA,” in Advances in Neural Information Processing Systems 13 (T. K. Leen, T. G. Dietterich, and V. Tresp, eds.), pp. 598–604, MIT Press, 2001.Google Scholar
  15. 15.
    B. van Ginneken, Computer-Aided Diagnosis in Chest Radiographs. PhD thesis, Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands, 2001. 184 pp.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rasmus Larsen
    • 1
  • Klaus Baggesen Hilger
    • 1
  1. 1.Informatics and Mathematical ModellingTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations