2D Grey-Level Convex Hull Computation: A Discrete 3D Approach

  • Ingela Nyström
  • Gunilla Borgefors
  • Gabriella Sanniti di Baja
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)

Abstract

We compute discrete convex hulls in 2D grey-level images, where we interpret grey-level values as heights in 3D landscapes. For these 3D objects, using a 3D binary method, we compute approximations of their convex hulls. Differently from other grey-level convex hull algorithms, producing results convex only in the geometric sense, our convex hull is convex also in the grey-level sense.

Keywords

shape representation grey-level morphology concavity analysis convex deficiency 

References

  1. 1.
    C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469–483, 1996.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    G. Borgefors, I. Nyström, and G. Sanniti di Baja. Computing covering polyhedra of non-convex objects. In Proc. of 5th British Machine Vision Conference, York, UK, pages 275–284, 1994.Google Scholar
  3. 3.
    G. Borgefors and G. Sanniti di Baja. Analyzing nonconvex 2D and 3D patterns. Computer Vision and Image Understanding, 63(1):145–157, 1996.CrossRefGoogle Scholar
  4. 4.
    R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice Hall, Inc, Upper Saddle River, New Jersey, 2nd ed., 2002.Google Scholar
  5. 5.
    K. P. Karunakaran, et al. Efficient stock cutting for laminated manufacturing. Computer-Aided Design, 34(4):281–298, 2002.CrossRefGoogle Scholar
  6. 6.
    F. P. Preparata and M. I. Shamos. Computational Geometry an Introduction, Ch. 3. Springer-Verlag, New York, 1985.Google Scholar
  7. 7.
    H. D. Sherali, J. C. Smith, and S. Z. Selim. Convex hull representations of models for computing collisions between multiple bodies. European Journal of Operational Research, 135(3):514–526, 2001.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    P. Soille. Grey scale convex hulls: Definition, implementation, and application. In H. Heijmans and J. Roerdink, eds, Proc. of ISMM’98. Computational Imaging and Vision, Vol. 12, pages 83–90. Kluwer Academic Publishers, 1998.Google Scholar
  9. 9.
    P. Soille. From binary to grey scale convex hulls. Fundamenta Informaticae, 41(1–2):131–146, 2000.MATHMathSciNetGoogle Scholar
  10. 10.
    S. Sternberg. Grayscale morphology. Computer Graphics and Image Processing, 35:333–355, 1986.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ingela Nyström
    • 1
  • Gunilla Borgefors
    • 2
  • Gabriella Sanniti di Baja
    • 3
  1. 1.Centre for Image AnalysisUppsala UniversityUppsalaSweden
  2. 2.Centre for Image AnalysisSwedish University for Agricultural SciencesUppsalaSweden
  3. 3.Istituto di CiberneticaNational Research Council of Italy (CNR)Pozzuoli (Napoli)Italy

Personalised recommendations