Skip to main content

Level Lines as Global Minimizers of Energy Functionals in Image Segmentation

  • Conference paper
  • First Online:

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1843)

Abstract

We propose a variational framework for determining global minimizers of rough energy functionals used in image segmentation. Segmentation is achieved by minimizing an energy model, which is comprised of two parts: the first part is the interaction between the observed data and the model, the second is a regularity term. The optimal boundaries are the set of curves that globally minimize the energy functional. Our motivation comes from the observation that energy functionals are traditionally complex, for which it is usually difficult to precise global minimizers corresponding to “best” segmentations. Therefore, we focus on basic energy models, which global minimizers can be explicitly determined. In this paper, we prove that the set of curves that minimizes the image moment-based energy functionals is a family of level lines, i.e. the boundaries of level sets (connected components) of the image. For the completeness of the paper, we present a non-iterative algorithm for computing partitions with connected components. It leads to a sound initialization-free algorithm without any hidden parameter to be tuned.

Keywords

  • Global Minimizer
  • Image Segmentation
  • Energy Model
  • Segmentation Result
  • Object Boundary

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. J. Beaulieu and M. Goldberg. Hierarchy in picture segmentation: a stepwise optimization approach. IEEE Trans. Patt. Anal. and Mach. Int., 11(2):150–163, 1989.

    CrossRef  Google Scholar 

  2. A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, Mass, 1987.

    CrossRef  Google Scholar 

  3. V. Caselles, B. Coll, and J. Morel. Topographic maps. preprint CEREMADE, 1997.

    Google Scholar 

  4. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. Int J. Computer Vision, 22(1):61–79, 1997.

    CrossRef  MATH  Google Scholar 

  5. A. Chakraborty and J. Duncan. Game-theoretic integration for image segmentation. IEEE Trans. Patt. Anal. and Mach. Int., 21(1):12–30, 1999.

    CrossRef  Google Scholar 

  6. L. Cohen. On active contour models and balloons. CVGIP: Image Understanding, 53(2):211–218, 1991.

    CrossRef  MATH  Google Scholar 

  7. L. Cohen. Deformable curves and surfaces in image analysis. In Int. Conf. Curves and Surfaces, Chamonix, France, 1996.

    Google Scholar 

  8. T. Darrell and A. Pentland. Cooperative robust estimation using layers of support. IEEE Trans. Patt. Anal. and Mach. Int., 17(5):474–487, 1995.

    CrossRef  Google Scholar 

  9. X. Descombes and F. Kruggel. A markov pixon information approach for low-level image description. IEEE Trans. Patt. Anal. and Mach. Int., 21(6):482–494, 1999.

    CrossRef  Google Scholar 

  10. S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Patt. Anal. and Mach. Int., 6(6):721–741, 1984.

    CrossRef  MATH  Google Scholar 

  11. J. Istas. Statistics of processes and signal-image segmentation. University of Paris VII, 1997.

    Google Scholar 

  12. I. Jermyn and H. Ishikawa. Globally optimal regions and boundaries. In Int. Conf. on Comp. Vis., pages 904–910, Kerkyra, Greece, September 1999.

    Google Scholar 

  13. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. Int J. Computer Vision, 12(1):321–331, 1987.

    Google Scholar 

  14. C. Kervrann, M. Hoebeke, and A. Trubuil. A level line selection approach for object boundary estimation. In Int. Conf. on Comp. Vis., pages 963–968, Kerkyra, Greece, September 1999.

    Google Scholar 

  15. Y. Leclerc. Constructing simple stable descriptions for image partitioning. Int J. Computer Vision, 3:73–102, 1989.

    CrossRef  Google Scholar 

  16. G. Matheron. Random Sets and Integral Geometry. John Wiley, New York, 1975.

    MATH  Google Scholar 

  17. J. Møller and R. Waagepertersen. Markov connected component fields. Adv. in Applied Probability, pages 1–35, 1998.

    Google Scholar 

  18. P. Monasse and F. Guichard. Scale-space from a level line tree. In Int. Conf. on Scale-Space Theories Comp. Vis., pages 175–186, Kerkyra, Greece, September 1999.

    Google Scholar 

  19. J. Morel and S. Solimini. Variational Methods in Image Segmentation. Birkhauser, 1994.

    Google Scholar 

  20. D. Mumford. The Bayesian rationale for energy functionals. Geometry-Driven Diffusion in Domputer Vision, pages 141–153, Bart Romeny ed., Kluwer Academic, 1994.

    Google Scholar 

  21. D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and variational problems. Communication on Pure and applied Mathematics, 42(5):577–685, 1989.

    MathSciNet  CrossRef  MATH  Google Scholar 

  22. S. Osher and J. Sethian. Fronts propagating with curvature dependent speed: algorithms based on the hamilton-jacobi formulation. J. Computational Physics, 79:12–49, 1988.

    MathSciNet  CrossRef  MATH  Google Scholar 

  23. F. O’Sullivan and M. Qian. A regularized contrast statistic for object boundary estimation-implementation and statistical evaluation. IEEE Trans. Patt. Anal, and Mach. Int., 16(6):561–570, 1994.

    CrossRef  Google Scholar 

  24. N. Paragios and R. Deriche. Coupled geodesic active regions for image segmentation: a level set approach. In Euro. Conf. on Comp. Vis., Dublin, Ireland, 2000.

    Google Scholar 

  25. T. Pavlidis and Y. Liow. Integrating region growing and edge detection. IEEE Trans. Patt. Anal. and Mach. Int., 12:225–233, 1990.

    CrossRef  Google Scholar 

  26. C. Schnörr. A study of a convex variational diffusion approach for image segmentation and feature extraction. J. Math. Imaging and Vision, 3(8):271–292, 1998.

    MathSciNet  CrossRef  MATH  Google Scholar 

  27. J. Wang. Stochastic relaxation on partitions with connected components and its application to image segmentation. IEEE Trans. Patt. Anal. and Mach. Int., 20(6):619–636, 1998.

    CrossRef  Google Scholar 

  28. L. Younes. Calibrating parameters of cost functionals. In Euro. Conf. on Comp. Vis., Dublin, Ireland, 2000.

    Google Scholar 

  29. S. Zhu and A. Yuille. Region competition: unifying snakes, region growing, and bayes/MDL for multiband image segmentation. IEEE Trans. Patt. Anal. and Mach. Int., 18(9):884–900, 1996.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kervrann, C., Hoebeke, M., Trubuil, A. (2000). Level Lines as Global Minimizers of Energy Functionals in Image Segmentation. In: Vernon, D. (eds) Computer Vision — ECCV 2000. ECCV 2000. Lecture Notes in Computer Science, vol 1843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45053-X_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45053-X_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67686-7

  • Online ISBN: 978-3-540-45053-5

  • eBook Packages: Springer Book Archive

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.