Advertisement

Towards an Estimation Aid for Nuclear Power Plant Refuelling Operations

  • J. A. Steele
  • L. A. Martin
  • A. Moyes
  • S. D. J. McArthur
  • J. R. McDonald
  • D. Young
  • R. Elrick
  • D. Howie
  • I. Y. Yule
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1821)

Abstract

Analysis of monitored refuelling data is required to confirm that refuelling operations have been correctly completed and that the reactor plant is in a safe condition for continued operation. This paper describes a methodology for identifying key points in the refuelling process thereby providing decision support for post-refuelling analysis. A feature identification technique is described which provides reliable input to Artificial Neural Networks (ANNs) and regression estimation techniques. This technique is shown to be robust against variations in the input data. The analysis in this paper shows that the regression models and ANNs can also provide similarly accurate predictions of a key refuelling event.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R. Uthurusamy, Advances in Knowledge Discovery and Data Mining, AAAI Press / MIT Press, Cambridge, Massachusetts (1996)Google Scholar
  2. 2.
    J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.Google Scholar
  3. 3.
    P. Langley & H. A. Simpson, “Applications of Machine Learning and Rule Induction”, Communications of the ACM, Vol 38, No 11 (1995) 54–64CrossRefGoogle Scholar
  4. 4.
    C. Chatfield, Statistics for technology: A course in applied statistics, Chapman & Hall, London (1996)Google Scholar
  5. 5.
    M. Dash, H. Liu, “Feature Selection for Classification”, Intelligent Data Analysis, Vol 1 (1997) 131–156CrossRefGoogle Scholar
  6. 6.
    C. Cardie, “Using Decision Trees to improve Case-Based Learning”, Proceedings of the Tenth International Conference on Machine Learning (1993) 25–32Google Scholar
  7. 7.
    K. Nabeshima, T. Suzudo, K. Suzuki & E. Turkcan, “Real-time Nuclear Power Plant Monitoring with Neural Networks”, Journal of Nuclear Sciencs and Technology, Vol 35, No 2 (1998) 93–100CrossRefGoogle Scholar
  8. 8.
    J. R. McDonald, G. M. Burt, J. S. Zielinski & S. D. J. McArthur, Intelligent Knowledge Based Systems in Electrical Power Engineering, Chapman & Hall, London, 1997.Google Scholar
  9. 9.
    W. Hamscher, L. Console & J. DeKleer, Readings in Model Based Diagnosis, Morgan Kaufmann (1992)Google Scholar
  10. 10.
    L. Tarassenko, A Guide to Neural Computing Applications, Arnold, London (1998)Google Scholar
  11. 11.
    S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, New York (1994)zbMATHGoogle Scholar
  12. 12.
    V. E. McGee & W. T. Carleton, “Piecewise Regression”, Journal of the American Statistical Association, September (1970) 1109–1124Google Scholar
  13. 13.
    C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford (1995)Google Scholar
  14. 14.
    I. Watson, Applying Case-based Reasoning: Techniques for Enterprise Systems, Morgan Kaufmann (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. A. Steele
    • 1
  • L. A. Martin
    • 1
  • A. Moyes
    • 1
  • S. D. J. McArthur
    • 1
  • J. R. McDonald
    • 1
  • D. Young
    • 2
  • R. Elrick
    • 3
  • D. Howie
    • 2
  • I. Y. Yule
    • 4
  1. 1.Centre for Electrical Power Engineering, Department of Electronic & Electrical Engineering, Royal CollegeUniversity of StrathclydeGlasgowUK
  2. 2.Electrical & Control Design SectionBritish Energy Generation LtdEast KilbrideUK
  3. 3.British Energy Generation LtdBarnwood, GloucesterUK
  4. 4.British Energy LtdDunbar, East Lothian

Personalised recommendations