Advertisement

Vision Guided Bin Picking and Mounting in a Flexible Assembly Cell

  • Martin Berger
  • Gernot Bachler
  • Stefan Scherer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1821)

Abstract

In this contribution a vision system for the flexible assembling of industrial parts is presented. A new three step approach is described. It consists of three independent vision guided modules. The picking module allows to pick objects from an unorganized heap or out of a bin, the pose determination module delivers the exact position of the isolated object and the surveillance module allows to verify the success of mounting the parts. This allows all the system stages to consist of standard components, while ensuring a high degree of flexibility, adaptability and robustness. Successfull results achieved with a prototype system implemented at our industrial cooperating partner are presented.

Keywords

Bin Picking Industrial Assembling Vision CAD Model Fitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Hujazi, E., and Sood, A. Range Image Segmentation with Applications to Robot Bin-Picking Using a Vacuum Gripper. IEEE Transactions on Systems, Man and Cybernetics 20, 6 (November/December 1990), 1313–1324.CrossRefGoogle Scholar
  2. 2.
    Araújo, H., Carceroni, R. L., and Brown, C. M. A Fully Perspective Formulation to Improve the Accuracy of Lowe’s Pose-Estimation Algorithm. Computer Vision and Image Understanding 70, 2 (1998), 227–238.CrossRefGoogle Scholar
  3. 3.
    Ayache, N., and Faugeras, O. D. HYPER: A new approach for the recognition and positioning of two-dimensional objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 1 (1986), 44–54.CrossRefGoogle Scholar
  4. 4.
    Bachler, G., Berger, M., Röhrer, R., Scherer, S., and Pinz, A. A Vision Driven Automatic Assembly Unit: Robust Bin Picking. In Proceedings of the 23rd Workshop of the AAPR (Steyr, Austria, May 1999), pp.205–213.Google Scholar
  5. 5.
    Bachler, G., Berger, M., Röhrer, R., Scherer, S., and Pinz, A. A Vision Driven Automatic Assembly Unit. In Proceedings of the 8th Conference on Computer Analysis of Images and Patterns (Ljubljana, September 1999), pp.375–382.Google Scholar
  6. 6.
    Berger, M., Bachler, G., Scherer, S., and Pinz, A. A Vision Driven Automatic Assembly Unit: Pose Determination from a Single Image. In Proceedings of the 23rd Workshop of the AAPR (Steyr, Austria, May 1999), pp.215–224.Google Scholar
  7. 7.
    Brooks, R. A. Symbolic Reasoning around 3-D Models and 2D-Images. Artificial Intelligence 17 (1981), 285–348.CrossRefGoogle Scholar
  8. 8.
    Fischler, M. A., and Bolles, R. C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24, 6 (June 1981), 381–395.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gold, S., Rangarajan, A., Lu, C.-P., Pappu, S., and Mjolsness, E. New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence. Pattern Recognition 31, 8 (1998), 1019–1031.CrossRefGoogle Scholar
  10. 10.
    Haralick, R. M., Joo, H., Lee, C., Zhuang, X., Vaidya, V. G., and Kim, M. B. Pose estimation from corresponding point data. IEEE Transactions on Systems, Man and Cybernetics 19, 6 (Nov./Dec. 1989), 1426–1446.CrossRefGoogle Scholar
  11. 11.
    Haralick, R. M., and Lee, C., Ottenberg, K., and Nölle, M. Analysis and Solution of The Three Point Perspective Pose Estimation Problem. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (1991), pp.592–598.Google Scholar
  12. 12.
    Ikeuchi, K. Generating an Interpretation Tree from a CAD Model for 3D-Object Recognition in Bin-Picking Tasks. International Journal of Computer Vision (1987), 145–165.Google Scholar
  13. 13.
    Lowe, D. G. Three-Dimensional Object Recognition from Single Two-Dimensional Images. Artificial Intelligence 31, 3 (March 1987), 355–395.CrossRefGoogle Scholar
  14. 14.
    Lowe, D. G. Fitting parameterized three-dimensional models to images. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 5 (May 1991), 441–450.CrossRefGoogle Scholar
  15. 15.
    Murase, H., and Nayar, S. K. Visual Learning and Recognition of 3-D Objects from Appearance. International Journal of Computer Vision 14 (1995), 5–24.CrossRefGoogle Scholar
  16. 16.
    Rahardja, K., and Kosaka, A. Vision-Based Bin-Picking: Recognition and Localization of Multiple Complex Objects Using Simple Visual Cues. In Proceedings of the International Conference on Intelligent Robotics and Systems (Osaka, Japan, November 1996), IEEE / RSJ.Google Scholar
  17. 17.
    Trobina, M., Leonardis, A., and Ade, F. Grasping Arbitrarily Shaped Objects. In Mustererkennung (Wien, 1994), W.G. Kropatsch and H. Bischof, Eds., vol.1, Technische Universität Wien, Xpress, pp.126–134.Google Scholar
  18. 18.
    Tsai, R. Y. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE Journal of Robotics and Automation RA-3, 4 (August 1987), 323–344.Google Scholar
  19. 19.
    Weinshall, D., and Basri, R. Distance metric between 3d models and 2d images for recognition and classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 4 (April 1996), 465–470.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Martin Berger
    • 1
  • Gernot Bachler
    • 1
  • Stefan Scherer
    • 1
  1. 1.Computer Graphics and VisionGraz University of TechnologyGraz

Personalised recommendations