Statistical Analysis of Large-Scale Structure in the Universe

  • Martin Kerscher
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 554)


Methods for the statistical characterization of the large-scale structure in the Universe will be the main topic of the present text. The focus is on geometrical methods, mainly Minkowski functionals and the J function. Their relations to standard methods used in cosmology and spatial statistics and their application to cosmological datasets will be discussed. A short introduction to the standard picture of cosmology is given.


Dark Matter Poisson Process Point Process Galaxy Cluster Point Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M.X., I.A. Stegun (1984): Pocketbook of Mathematical Functions (Harri Deutsch, Thun, Frankfurt/Main)Google Scholar
  2. 2.
    Adler, R.J. (1981): The geometry of random fields (John Wiley & Sons, Chichester)zbMATHGoogle Scholar
  3. 3.
    Andernach, H., E. Tago (1998): ‘Current status of the ACO cluster redshift compilation’. In: Proc. of the 12th Potsdam Cosmology Workshop 1997, Large Scale Structure: Tracks and Traces, ed. by V. Müller, S. Gottlöber, J.P. Mücket, J. Wambsgans (World Scientific, Singapore), Astro-ph/9710265Google Scholar
  4. 4.
    Baddeley, A.J., M. Kerscher, K. Schladitz, B. Scott (1999): ‘Estimating the J function without edge correction’, Statist. Neerlandica, in pressGoogle Scholar
  5. 5.
    Baddeley, A.J., B.W. Silverman (1984): ‘A cautionary example on the use of second-order methods for analyzing point patterns’, Biometrics, 40, pp. 1089–1093MathSciNetCrossRefGoogle Scholar
  6. 6.
    Balian, R., R. Schaefier (1989): ‘Scale-invariant matter distribution in the Universe I. counts in cells’, Astron. Astrophys., 220, pp. 1–29ADSGoogle Scholar
  7. 7.
    Bardeen, J.M., J.R. Bond, N. Kaiser, A.S. Szalay (1986): ‘The statistics of peaks of Gaussian random fields’, Ap. J., 304, pp. 15–61ADSCrossRefGoogle Scholar
  8. 8.
    Barrow, J.D., D.H. Sonoda, S.P. Bhavsar (1985): ‘Minimal spanning trees, filaments and galaxy clustering’, Mon. Not. Roy. Astron. Soc., 216, pp. 17–35ADSGoogle Scholar
  9. 9.
    Bedford, T., J. van den Berg (1997): ‘A remark on the van Lieshout and Baddeley J-function for point processes’, Adv. Appl. Prob., 29, pp. 19–25zbMATHCrossRefGoogle Scholar
  10. 10.
    Beisbart, C., T. Buchert (1998): ‘Characterizing cluster morphology using vector-valued minkowski functionals’. In: Proc. of the 12th Potsdam Cosmology Workshop 1997, Large Scale Structure: Tracks and Traces, ed. by V. Müller, S. Gottlöber, J.P. Mücket, J. Wambsgans (World Scientific, Singapore), astro-ph/9711034Google Scholar
  11. 11.
    Beisbart, C., T. Buchert, M. Bartelmann, J.G. Colberg, H. Wagner (2000): ‘Morphological evolution of galaxy clusters: First application of the quermaß vectors’, in preparationGoogle Scholar
  12. 12.
    Beisbart, C., T. Buchert, H. Wagner (1999): ‘Morphometry of galaxy clusters’, submittedGoogle Scholar
  13. 13.
    Bernardeau, F., L. Kofman (1995): ‘Properties of the cosmological density distribution function’, Ap. J., 443, pp. 479–498ADSCrossRefGoogle Scholar
  14. 14.
    Bertschinger, E. (1992): ‘Large-scale structures and motions: Linear theory and statistics’. In: New Insights into the Universe, ed. by V. Martinez, M. Portilla, D. Saez, number 408 in Lecture Notes in Physics (Springer Verlag, Berlin), pp. 65–126Google Scholar
  15. 15.
    Borgani, S. (1995): ‘Scaling in the universe’, Physics Rep., 251, pp. 1–152ADSCrossRefGoogle Scholar
  16. 16.
    Börner, G. (1993): The Early Universe, Facts and Fiction, 3rd ed. (Springer Verlag, Berlin)Google Scholar
  17. 17.
    Bouchet, F.R., R. Juszkiewicz, S. Colombi, R. Pellat (1992): ‘Weakly nonlinear gravitational instability for arbitrary Omega’, Ap. J. Lett., 394, pp. L5–L8ADSCrossRefGoogle Scholar
  18. 18.
    Broadhurst, T.J., R.S. Ellis, D.C. Koo, A.S. Szalay (1990): ‘Large-scale distribution of galaxies at the galactic poles’, Nature, 343, pp. 726–728ADSCrossRefGoogle Scholar
  19. 19.
    Buchert, T. (1996): ‘Lagrangian perturbation approach to the formation of large-scale structure’. In: Proc. of the international school of physics Enrico Fermi. Course CXXXII: Dark matter in the Universe, ed. by S. Bonometto, J. Primack, A. Provenzale (Società Italiana di Fisica, Varenna sul Lago di Como)Google Scholar
  20. 20.
    Buchert, T. (1999): ‘On average properties of inhomogeneous fluids in general relativity: I. dust cosmologies’, G.R.G. in press, gr-qc/9906015Google Scholar
  21. 21.
    Buchert, T., J. Ehlers (1997): ‘Averaging inhomogeneous Newtonian cosmologies’ Astron. Astrophys., 320, pp. 1–7ADSGoogle Scholar
  22. 22.
    Cappi, A., C. Benoist, L. Da Costa, S. Maurogordato (1998): ‘Is the universe a fractal?, results from the SSRS2’, Astron. Astrophys., 335, pp. 779–788ADSGoogle Scholar
  23. 23.
    Coles, P., A. Davies, R.C. Pearson (1996): ‘Quantifying the topology of large-scale structure’, Mon. Not. Roy. Astron. Soc., 281, pp. 1375–1384ADSGoogle Scholar
  24. 24.
    Coles, P., F. Lucchin (1994): Cosmology: The origin and evolution of cosmic structure (John Wiley & Sons, Chichester)Google Scholar
  25. 25.
    Colombi, S., I. Szapudi, A.S. Szalay (1998): ‘Effects of sampling on statistics of large scale structure’, Mon. Not. Roy. Astron. Soc., 296, pp. 253–274ADSCrossRefGoogle Scholar
  26. 26.
    da Costa, L.N., C.N.A. Willmer, P. Pellegrini, O.L. Chaves, C. Rite, M.A.G. Maia, M.J. Geller, D.W. Latham, M.J. Kurtz, J.P. Huchra, M. Ramella, A.P. Fairall, C. Smith, S. Lipari (1998): ‘The Southern Sky Redshift Survey’, A. J., 116, pp. 1–7ADSCrossRefGoogle Scholar
  27. 27.
    Daley, D.J., D. Vere-Jones (1988): An Introduction to the Theory of Point Processes (Springer Verlag, Berlin)zbMATHGoogle Scholar
  28. 28.
    Dolgov, A., A. Doroshkevich, D. Novikov, I. Novikov (1999): ‘Geometry and statistics of cosmic microwave polarization’, Astro-ph/9901399Google Scholar
  29. 29.
    Doroshkevich, A.G., V. Müller, J. Retzla., V. Turchaninov (1999): ‘Superlarge-scale structure in n-body simulations’, Mon. Not. Roy. Astron. Soc., 306, pp. 575–591ADSCrossRefGoogle Scholar
  30. 30.
    Efstathiou, G. (1996): ‘Observations of large-scale structure in the Universe’. In: LesHouches Session LX: cosmology and large scale structure, august 1993, ed. by R. Schaeffer, J. Silk, M. Spiro, J. Zinn-Justin (Elsevier, Amsterdam), pp. 133–252Google Scholar
  31. 31.
    Einasto, J., M. Einasto, P. Frisch, S. Gottlöber, V. Müller, V. Saar, A.A. Starobinsky, E. Tago, E., D.T.H. Andernach (1997): ‘The supercluster-void network. II. an oscillating cluster correlation function’, Mon. Not. Roy. Astron. Soc., 289, pp. 801–812ADSGoogle Scholar
  32. 32.
    Einasto, J., M. Einasto, M., S. Gottlöber, V. Müller, V. Saar, A.A. Starobinsky, E. Tago, D. Tucker, H. Andernach, P. Frisch (1997): ‘A 120-Mpc periodicity in the three-dimensional distribution of galaxy superclusters’, Nature, 385, pp. 139–141ADSCrossRefGoogle Scholar
  33. 33.
    Einasto, M., E. Tago, J. Jaaniste, J. Einasto, Andernach, H. (1997): ‘The supercluster-void network. I. the supercluster catalogue and large-scale distribution’, Astron. Astrophys. Suppl., 123, pp. 119–133ADSCrossRefGoogle Scholar
  34. 34.
    Fiksel, T. (1988): ‘Edge-corrected density estimators for point processes’, Statistics, 19, pp. 67–75zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Fisher, K.B., J.P. Huchra, M.A. Strauss, M. Davis, A. Yahil, D. Schlegel (1995): ‘The IRAS 1.2 Jy survey: Redshift data’, Ap. J. Suppl., 100, pp. 69–103ADSCrossRefGoogle Scholar
  36. 36.
    Gaite, J., A. Dominguez, J. Perez-Mercader (1999): ‘The fractal distribution of galaxies and the transition to homogeneity’, Ap. J., 522, pp. L5–L8ADSCrossRefGoogle Scholar
  37. 37.
    Goldenfeld, N. (1992): Lectures on Phase Transitions and the Renormalization Group (Addison-Wesley, Reading, MA)Google Scholar
  38. 38.
    Grassberger, P., I. Procaccia (1984): ‘Dimensions and entropies of strange attractors from fluctuating dynamics approach’, Physica D, 13, pp. 34–54zbMATHADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Gunn, J.E. (1995): ‘The Sloan Digital Sky Survey’, Bull. American Astron. Soc., 186, p. 875ADSGoogle Scholar
  40. 40.
    Hadwiger, H. (1955): Altes und Neues über konvexe Körper (Birkhäuser, Basel)zbMATHGoogle Scholar
  41. 41.
    Hadwiger, H. (1957): Vorlesungen über Inhalt, Ober.äche und Isoperimetrie (Springer Verlag, Berlin)Google Scholar
  42. 42.
    Hadwiger, H., R. Schneider (1971): ‘Vektorielle Integralgeometrie’, Elemente der Mathematik, 26, pp. 49–72zbMATHMathSciNetGoogle Scholar
  43. 43.
    Hamilton, A.J.S. (1993): ‘Toward better ways to measure the galaxy correlation function’, Ap. J., 417, pp. 19–35ADSCrossRefGoogle Scholar
  44. 44.
    Hansen, J.P., I.R. McDonnald (1986): Theory of Simple Liquids (Academic Press, New York and London)Google Scholar
  45. 45.
    Heavens, A.F. (1999): ‘Estimating non-Gaussianity in the microwave background’, Mon. Not. Roy. Astron. Soc., 299, pp. 805–808ADSCrossRefGoogle Scholar
  46. 46.
    Heavens, A.F., R.K. Sheth (1999): ‘The correlation of peaks in the microwave background’, submitted, astro-ph/9906301Google Scholar
  47. 47.
    Hobson, M.P., A.W. Jones, A.N. Lasenby (1999): ‘Wavelet analysis and the detection of non-Gaussianity in the CMB’, Mon. Not. Roy. Astron. Soc., 309, pp. 125–140ADSCrossRefGoogle Scholar
  48. 48.
    Huchra, J.P., M.J. Geller, H.G. Corwin Jr. (1995): ‘The CfA redshift survey: Data for the NGP + 36 zone’, Ap. J. Suppl., 99, pp. 391–403ADSCrossRefGoogle Scholar
  49. 49.
    Huchra, J.P., M.J. Geller, V. De Lapparent, H.G. Corwin Jr. (1990): ‘The CfA redshift survey-data for the NGP + 30zone’, Ap. J. Suppl., 72, pp. 433–470ADSCrossRefGoogle Scholar
  50. 50.
    Jing, Y. P., G. Börner (1998): ‘The three-point correlation function of galaxies’, Ap. J., 503, pp. 37–47ADSCrossRefGoogle Scholar
  51. 51.
    Juszkiewicz, R., D.H. Weinberg, P. Amsterfamski, M. Chodorowski, F.R. Bouchet (1995): ‘Weakly nonlinear Gaussian fluctuations and the Edgeworth expansion’, Ap. J., 442, pp. 39–56ADSCrossRefGoogle Scholar
  52. 52.
    Kates, R., E. Kotok, A. Klypin (1991): ‘High-resolution simulations of galaxy formation in a cold dark matter scenario’, Astron. Astrophys., 243, pp. 295–308ADSGoogle Scholar
  53. 53.
    Kauffmann, G., A. Nusser, M. Steinmetz (1997): ‘Galaxy formation and large-scale bias’, Mon. Not. Roy. Astron. Soc., 286, pp. 795–811ADSGoogle Scholar
  54. 54.
    Kerscher, M. (1998a): Morphologie großräumiger Strukturen im Universum (GCA-Verlag, Herdecke)Google Scholar
  55. 55.
    Kerscher, M. (1998b): ‘Regularity in the distribution of superclusters?’ Astron. Astrophys., 336, pp. 29–34ADSGoogle Scholar
  56. 56.
    Kerscher, M. (1999): ‘The geometry of second-order statistics-biases in common estimators’, Astron. Astrophys., 343, pp. 333–347ADSGoogle Scholar
  57. 57.
    Kerscher, M., M.J. Pons-Bordería, J. Schmalzing, R. Trasarti-Battistoni, V.J. Martínez, T. Buchert, R. Valdarnini (1999): ‘A global descriptor of spatial pattern interaction in the galaxy distribution’, Ap. J., 513, pp. 543–548ADSCrossRefGoogle Scholar
  58. 58.
    Kerscher, M., J. Schmalzing, T. Buchert (1996): ‘Analyzing galaxy catalogues with Minkowski functionals’. In: Mapping, measuring and modelling the Universe, ed. by P. Coles, V. Martínez, M.J. Pons Bordería (Astronomical Society of the Pacific, Valencia), pp. 247–252Google Scholar
  59. 59.
    Kerscher, M., Schmalzing, J., T. Buchert, H. Wagner (1996): ‘The significance of the fluctuations in the IRAS 1.2 Jy galaxy catalogue’. In: Proc. 2nd SFB workshop on Astro-particle physics Ringberg 1996, Report SFB375/P002, ed. by R. Bender, T. Buchert, P. Schneider (Ringberg, Tegernsee), pp. 83–98Google Scholar
  60. 60.
    Kerscher, M., J. Schmalzing, T. Buchert, H. Wagner (1998): ‘Fluctuations in the 1.2 Jy galaxy catalogue’, Astron. Astrophys., 333, pp. 1–12ADSGoogle Scholar
  61. 61.
    Kerscher, M., J. Schmalzing, J. Retzla., S. Borgani, T. Buchert, S. Gottlöber, V. Müller, M. Plionis, Wagner, H. (1997): ‘Minkowski functionals of Abell/ACO clusters’, Mon. Not. Roy. Astron. Soc., 284, pp. 73–84ADSGoogle Scholar
  62. 62.
    Kerscher, M., I. Szapudi, A. Szalay (1999): ‘A comparison of estimators for the two-point correlation function: dispelling the myths’, submittedGoogle Scholar
  63. 63.
    Klain, D.A., C.C. Rota (1997): Introduction to Geometric Probability (Cambridge University Press, Cambridge)zbMATHGoogle Scholar
  64. 64.
    Kolatt, T., A. Dekel, G. Ganon, J.A. Willick (1996): ‘Simulating our cosmological neighborhood: Mock catalogs for velocity analysis’, Ap. J., 458, pp. 419–434ADSCrossRefGoogle Scholar
  65. 65.
    Landy, S.D., A.S. Szalay (1993): ‘Bias and variance of angular correlation functions’, Ap. J., 412, pp. 64–71ADSCrossRefGoogle Scholar
  66. 66.
    Maddox, S. (1998): ‘The 2df galaxy redshift survey: Preliminary results’. In: Proc. of the 12th Potsdam Cosmology Workshop 1997, Large Scale Structure: Tracks and Traces, ed. by V. Müller, S. Gottlöber, J.P. Mücket, J. Wambsgans (World Scientific, Singapore), Astro-ph/9711015Google Scholar
  67. 67.
    Mandelbrot, B. (1982): The Fractal Geometry of Nature (Freeman, San Francisco)zbMATHGoogle Scholar
  68. 68.
    Martínez, V.J. (1996): ‘Measures of galaxy clustering’. In: Proc. of the international school of physics Enrico Fermi. Course CXXXII: Dark matter in the Universe, ed. by S. Bonometto, J. Primack, A. Provenzale (Società Italiana di Fisica, Varenna sul Lago di Como)Google Scholar
  69. 69.
    Matheron, G. (1989): Estimating and Choosing: An Essay on Probability in Practice (Springer Verlag, Berlin)zbMATHGoogle Scholar
  70. 70.
    Mazur, S. (1992): ‘Neighborship partition of the radial distribution function for simple liquids’, J. Chem. Phys., 97, pp. 9276–9282ADSCrossRefGoogle Scholar
  71. 71.
    McCauley, J.L. (1997): ‘Are galaxy distributions scale invariant? a perspective from dynamical systems theory’, submitted, astro-ph/9703046Google Scholar
  72. 72.
    McCauley, J.L. (1998): ‘The galaxy distributions: Homogeneous, fractal, or neither?’ Fractals, 6, pp. 109–119CrossRefGoogle Scholar
  73. 73.
    Mecke, K.R. (1994): Integralgeometrie in der Statistischen Physik: Perkolation, komplexe Flüssigkeiten und die Struktur des Universums (Harri Deutsch, Thun, Frankfurt/Main)Google Scholar
  74. 74.
    Mecke, K.R., Buchert, H. Wagner(1994): ‘Robust morphological measures for large-scale structure in the Universe’, Astron. Astrophys., 288, pp. 697–704ADSGoogle Scholar
  75. 75.
    Mecke, K.R., H. Wagner (1991): ‘Euler characteristic and related measures for random geometric sets’, J. Stat. Phys., 64, pp. 843–850zbMATHMathSciNetCrossRefADSGoogle Scholar
  76. 76.
    Melott, A.L. (1990): ‘The topology of large-scale structure in the Universe’, Physics Rep., 193, pp. 1–39ADSCrossRefGoogle Scholar
  77. 77.
    Milne, R.K., M. Westcott (1972): ‘Further results for Gauss-poisson processes’, Adv. Appl. Prob., 4, pp. 151–176zbMATHMathSciNetCrossRefGoogle Scholar
  78. 78.
    Mo, H.J., Z.G. Deng, X.Y. Xia, P. Schiller, Börner, G. (1992): ‘Typical scales in the distribution of galaxies and clusters of galaxies from unnormalized pair counts’, Astron. Astrophys., 257, pp. 1–10ADSGoogle Scholar
  79. 79.
    Muche, L. (1996): ‘Distributional properties of the three-dimensional Poisson Delauney cell’, J. Stat. Phys., 84, pp. 147–167zbMATHMathSciNetCrossRefADSGoogle Scholar
  80. 80.
    Muche, L. (1997): ‘Fragmenting the universe and the Voronoi tessellation’, preprint, FreibergGoogle Scholar
  81. 81.
    Novikov, D., H.A. Feldman, S.F. Shandarin (1999): ‘Minkowski functionals and cluster analysis for CMB maps’, Int. J. Mod. Phys., D8, pp. 291–306ADSGoogle Scholar
  82. 82.
    Padmanabhan, T. (1993): Structure formation in the Universe (Cambridge University Press, Cambridge)Google Scholar
  83. 83.
    Padmanabhan, T., Subramanian(1993): ‘Zelvich approximation and the probability distribution for the smoothed density field in the nonlinear regime’, Ap. J., 410, pp. 482–487ADSCrossRefGoogle Scholar
  84. 84.
    Peacock, J.A. (1992): ‘Satistics of cosmological density fields’, In: New Insights into the Universe, ed. by V. Martinez, M. Portilla, D. Saez, number 408 in Lecture Notes in Physics, (Springer Verlag, Berlin), pp. 65–126Google Scholar
  85. 85.
    Peebles, P. (1973): ‘Satistical analysis of catalogs of extragalactic objects. I. theory’, Ap. J., 185, pp. 413–440ADSMathSciNetCrossRefGoogle Scholar
  86. 86.
    Peebles, P.J.E. (1980): The Large Scale Structure of the Universe (Princeton University Press, Princeton, New Jersey)Google Scholar
  87. 87.
    Platzöder, M., T. Buchert (1995): ‘Applications of Minkowski functionals for the statistical analysis of dark matter models’. In: Proc. of “1st SFB workshop on Astroparticle physics”, Ringberg, Tegernsee, ed. by A. Weiss, G. Raffelt, W. Hillebrandt, F. von Feilitzsch, pp. 251–263, astro-ph/9509014Google Scholar
  88. 88.
    Plionis, M., R. Valdarnini (1991): ‘Evidence for large-scale structure on scales about 300/h Mpc’, Mon. Not. Roy. Astron. Soc., 249, pp. 46–62ADSGoogle Scholar
  89. 89.
    Pons-Bordería, M.-J., V.J. Martńez, D. Stoyan, H. Stoyan, E. Saar (1999): ‘Comparing estimators of the galaxy correlation function’, Ap. J., 523, pp. 480–491ADSCrossRefGoogle Scholar
  90. 90.
    Retzla., J., S. Borgani, S. Gottlöber, A. Klypin, V. Müller (1998): ‘Constraining cosmological models with cluster power spectra’, New Astronomy, 3, pp. 631–646ADSCrossRefGoogle Scholar
  91. 91.
    Sahni, V., Sathyaprakash, S.F. Shandarin (1997): ‘Probing large-scale structure using percolation and genus curves’, Ap. J., 476, pp. L1–L5ADSCrossRefGoogle Scholar
  92. 92.
    Sahni, V., B.S. Sathyaprakash, S.F. Shandarin (1998): ‘Shapefinders: A new shape diagnostic for large-scale structure’, Ap. J., 495, pp. L5–L8ADSCrossRefGoogle Scholar
  93. 93.
    Sandage, A. (1995): ‘Practical cosmology: Inventing the past’ In: The Deep Universe, ed. by A. Sandage, R. Kron, M. Longair, Saas-Fee Advanced Course Lecture Notes 1993 (Swiss society for Astrophysics and Astronomy, Springer Verlag, Berlin), pp. 1–232Google Scholar
  94. 94.
    Santaló, L. A. (1976): Integral Geometry and Geometric Probability (Addison-Wesley, Reading, MA)zbMATHGoogle Scholar
  95. 95.
    Sathyaprakash, B.S., V. Sahni, S.F. Shandarin (1998): ‘Morphology of clusters and superclusters in N-body simulations of cosmological gravitational clustering’, Ap. J., 508, pp. 551–569ADSCrossRefGoogle Scholar
  96. 96.
    Sathyaprakash, B.S., V. Sahni, S.F. Shandarin, K.B. Fisher, K. B. (1998): ‘Filaments and pancakes in the IRAS 1.2 Jy redshift survey’, Ap. J., 507, pp. L109–L112ADSCrossRefGoogle Scholar
  97. 97.
    Schmalzing, J., T. Buchert (1997): ‘Beyond genus statistics: A unifying approach to the morphology of cosmic structure’, Ap. J. Lett., 482, pp. L1–L4ADSCrossRefGoogle Scholar
  98. 98.
    Schmalzing, J., T. Buchert, A. Melott, V. Sahni, B. Sathyaprakash, S. Shandarin (1999): ‘Disentangling the cosmic web I: Morphology of isodensity contours’, in press, astro-ph/9904384Google Scholar
  99. 99.
    Schmalzing, J., A. Diaferio (1999): ‘Topology and geometry of the CfA2 redshift survey’, in press, astro-ph/9910228Google Scholar
  100. 100.
    Schmalzing, J., K.M. Górski (1998): ‘Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps’, Mon. Not. Roy. Astron. Soc., 297, pp. 355–365ADSCrossRefGoogle Scholar
  101. 101.
    Schmalzing, J., S. Gottlöber, A. Kravtsov, A. Klypin (1999): ‘Quantifying the evolution of higher order clustering’, Mon. Not. Roy. Astron. Soc., 309, pp. 1007–1016ADSCrossRefGoogle Scholar
  102. 102.
    Schmalzing, J., M. Kerscher, T. Buchert (1996): ‘Minkowski functionals in cosmology’. In: Proc. of the international school of physics Enrico Fermi. Course CXXXII: Dark matter in the Universe, ed. by S. Bonometto, J. Primack, A. Provenzale (Società Italiana di Fisica, Varenna sul Lago di Como), pp. 281–291Google Scholar
  103. 103.
    Schneider, R. (1993): Convex bodies: the Brunn-Minkowski theory (Cambridge University Press, Cambridge)zbMATHGoogle Scholar
  104. 104.
    Schneider, R., W. Weil (1992): Integralgeometrie (Bernd G. Teubner, Leipzig, Berlin)zbMATHGoogle Scholar
  105. 105.
    Shandarin, S.F. (1983): ‘Percolation theory and the cell-lattice structure of the Universe’, Sov. Astron. Lett., 9, pp. 104–106ADSGoogle Scholar
  106. 106.
    Sharp, N. (1981): ‘Holes in the zwicky catalogue’, Mon. Not. Roy. Astron. Soc., 195, pp. 857–867ADSGoogle Scholar
  107. 107.
    Silverman, B.W. (1986): Density Estimation for Statistics and Data Analysis (Chapman and Hall, London)zbMATHGoogle Scholar
  108. 108.
    Stoyan, D. (1998): ‘Caution with “fractal” point-patterns’, Statistics, 25, pp. 267–270MathSciNetCrossRefGoogle Scholar
  109. 109.
    Stoyan, D., W.S. Kendall, J. Mecke (1995): Stochastic Geometry and its Applications, 2nd ed., (John Wiley & Sons, Chichester)zbMATHGoogle Scholar
  110. 110.
    Stoyan, D., H. Stoyan (1994): Fractals, Random Shapes and Point Fields (John Wiley & Sons, Chichester)zbMATHGoogle Scholar
  111. 111.
    Stoyan, D., H. Stoyan (2000): ‘Improving ratio estimators of second order point process statistics’, Scand. J. Statist., in pressGoogle Scholar
  112. 112.
    Stratonovich, R.L. (1963): Topics in the theory of random noise, volume 1 (Gordon and Breach, New York)Google Scholar
  113. 113.
    Sylos Labini, F., M. Montuori, L. Pietronero (1998): ‘Scale invariance of galaxy clustering’, Physics Rep., 293, pp. 61–226ADSCrossRefGoogle Scholar
  114. 114.
    Szalay, A.S. (1997): ‘Walls and bumps in the Universe’. In: Proc. of the 18th Texas Symposium on Relativistic Astrophysics, ed. by A. Olinto (AIP, New York)Google Scholar
  115. 115.
    Szapudi, I. (1998): ‘A new method for calculating counts in cells’, Ap. J., 497, pp. 16–20Google Scholar
  116. 116.
    Szapudi, I., S. Colombi (1996): ‘Cosmic error and statistics of large scale structure’, Ap. J., 470, pp. 131–148Google Scholar
  117. 117.
    Szapudi, I., E. Gaztanaga (1998): ‘Comparison of the large-scale clustering in the APM and the EDSGC galaxy surveys’, Mon. Not. Roy. Astron. Soc., 300, pp. 493–496Google Scholar
  118. 118.
    Szapudi, I., A.S. Szalay (1998): ‘A new class of estimators for the n-point correlations’, Ap. J., 494, pp. L41–L44Google Scholar
  119. 119.
    Thönnes, E., M.-C. van Lieshout (1999): “A comparative study on the power of van Lieshout and Baddeley’s J-function”, Biom. J., 41, pp. 721–734zbMATHCrossRefGoogle Scholar
  120. 120.
    Tomita, H. (1986): ‘Statistical properties of random interface systems’, Progr. Theor. Phys., 75, pp. 482–45ADSMathSciNetCrossRefGoogle Scholar
  121. 121.
    Totsuji, H., T. Kihara (1969): ‘The correlation function for the distribution of galaxies’, Publications of the Astronomical Society of Japan, 21, pp. 221–229ADSGoogle Scholar
  122. 122.
    van Lieshout, M.N.M., A.J. Baddeley (1996): ‘A nonparametric measure of spatial interaction in point patterns’, Statist. Neerlandica, 50, pp. 344–361zbMATHMathSciNetCrossRefGoogle Scholar
  123. 123.
    Wegner, G., M.P. Haynes, R. Giovanelli (1993): ‘A survey of the Pisces-Perseus supercluster. v-the declination strip +33.5 deg to +39.5 deg and the main supercluster ridge’, A. J., 105, pp. 1251–1270ADSCrossRefGoogle Scholar
  124. 124.
    Weil, W. (1983): ‘Stereology: A survey for geometers’. In: Convexity and its applications, ed. by P.M. Gruber, J.M. Wills (Birkhäuser, Basel), pp. 360–412Google Scholar
  125. 125.
    Weinberg, D.H., J.R. Gott III, A.L. Melott (1987): ‘The topology of large-scale-structure. I. topology and the random phase hypothesis’, Ap. J., 321, pp. 2–27ADSCrossRefGoogle Scholar
  126. 126.
    Weiß, A.G., T. Buchert (1993): ‘High-resolution simulation of deep pencil beam surveys-analysis of quasi-periodicty’, Astron. Astrophys., 274, pp. 1–11ADSGoogle Scholar
  127. 127.
    White, S.D.M. (1979): ‘The hierarchy of correlation functions and its relation to other measures of galaxy clustering’, Mon. Not. Roy. Astron. Soc., 186, pp. 145–154ADSGoogle Scholar
  128. 128.
    Willmer, C., L.N. da Costa, L. N., P. Pellegrini (1998): ‘Southern sky redshift survey: Clustering of local galaxies’, A. J., 115, pp. 869–884ADSCrossRefGoogle Scholar
  129. 129.
    Winitzki, S., A. Kosowsky (1997): ‘Minkowski functional description of microwave background Gaussianity’, New Astronomy, 3, pp. 75–100ADSCrossRefGoogle Scholar
  130. 130.
    Worsley, K. (1998): ‘Testing for a signal with unknown location and scale in a χ2 random field, with an application to fMRI’, Adv. Appl. Prob., acceptedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Martin Kerscher
    • 1
  1. 1.Sektion PhysikLudwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations