A Fixed Point Semantics for Logic Programs Extended with Cuts

  • Wim Vanhoof
  • Remko Tronçon
  • Maurice Bruynooghe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2664)


In this paper, we develop a bottom-up fixed point semantics for pure Prolog programs extended with !/0 that allows to reconstruct the operational semantics of a particular goal. Our semantics captures both the order in which solutions are computed by SLD-resolution and their multiplicity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B, Formal Models and Semantics, pages 493–574. Elsevier Science Publishers B.V., 1990.Google Scholar
  2. 2.
    Roberto Barbuti, Michael Codish, Roberto Giacobazzi, and Giorgio Levi. Modelling Prolog control. Journal of Logic and Computation, 3(6):579–603, December 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Roberto Barbuti, Roberto Giacobazzi, and Giorgio Levi. A General Framework for Semantics-Based Bottom-Up Abstract Interpretation of Logic Programs. ACM TOPLAS, 15(1):133–181, January 1993.CrossRefGoogle Scholar
  4. 4.
    Marianne Baudinet. Proving termination of Prolog programs: A semantic approach. Journal of Logic Programming, 14(1 & 2):1–29, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach: Theory and applications. Journal of Logic Programming, 19/20:149–197, 1994.CrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A compositional semantics for logic programs. Theoretical Computer Science, 122(1–2):3–47, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Bugliesi and F. Russo. Partial evaluation in Prolog: Some improvements about cut. In Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings of the North American Conference on Logic Programming, pages 645–660, Cleveland, Ohio, USA, 1989.Google Scholar
  8. 8.
    Baudouin Le Charlier, Sabina Rossi, and Pascal Van Hentenryck. Sequence-based abstract interpretation of Prolog. Theory and Practice of Logic Programming, 2(1):25–84, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Codish, D. Dams, and E. Yardeni. Bottom-Up Abstract Interpretation of Logic Programs. Theoretical Computer Science, 124(1):93–125, February 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Marco Comini and Maria Chiara Meo. Compositionality properties of SLD-derivations. Theoretical Computer Science, 211(1 & 2):275–309, January 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    S. K. Debray and P. Mishra. Denotational and operational semantics for Prolog. Journal of Logic Programming, 5(1):61–91, 1988.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of the operational behaviour of logic programs. Theoretical Computer Science, 69:289–318, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    G. Filè and S. Rossi. Static analysis of Prolog with cut. In A. Voronkov, editor, Proceedings of the 4th International Conference on Logic Programmng and Automated Reasoning, pages 134–145, 1993. Springer-Verlag.Google Scholar
  14. 14.
    N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation. Prentice Hall, 1993.Google Scholar
  15. 15.
    M. Leuschel and D. De Schreye. Logic program specialisation: How to be more specific. In H. Kuchen and S. Swierstra, editors, Proceedings of the International Symposium on Programming H Languages, Implementations, Logics and Programs (PLILP’96), pages 137–151, Aachen, Germany, 1996. Springer-Verlag. LNCS 1140.Google Scholar
  16. 16.
    Michael Leuschel. Partial evaluation of the “real thing”. In Logic Program Synthesis and Transformation. Proceedings of LOPSTR’94, Pisa, Italy, 1994.Google Scholar
  17. 17.
    Michael Leuschel. Program specialisation and abstract interpretation reconciled. In Joxan Jaffar, editor, Proceedings of the Joint International Conference and Symposium on Logic Programming (JICSLP’98), pages 220–234, Manchester, UK, 1998. MIT Press.Google Scholar
  18. 18.
    J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.Google Scholar
  19. 19.
    K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programs. In Robert A. Kowalski and Kenneth A. Bowen, editors, Proceedings of the Fifth International Conference and Symposium on Logic Programming, pages 909–923, Seattle, 1988. ALP, IEEE, The MIT Press.Google Scholar
  20. 20.
    R. A. O’Keefe. On the treatment of cuts in Prolog source-level tools. In Proceedings of the International Symposium on Logic Programming, pages 68–72. IEEE Computer Society, Technical Committee on Computer Languages, The Computer Society Press, July 1985.Google Scholar
  21. 21.
    S. Prestwich. An unfold rule for full Prolog. In Kung-Kiu Lau and Tim Clement, editors, Proceedings of the International Workshop on Logic Program Synthesis and Transformation, Workshops in Computing, pages 199–213, London, July 2–3 1993. Springer Verlag.Google Scholar
  22. 22.
    M. Proietti and A. Pettorossi. Semantics preserving transformation rules for Prolog. In Proceedings of PEPM’91, Sigplan Notices, Vol. 26, N. 9, pages 274–284, 1991.CrossRefGoogle Scholar
  23. 23.
    D. Sahlin. Mixtus: An automatic partial evaluator for full prolog. New Generation Computing, 12(1): 7–51, 1993.zbMATHCrossRefGoogle Scholar
  24. 24.
    F. Spoto. Operational and goal-independent denotational semantics for Prolog with cut. Journal of Logic Programming, 42(1):1–46, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Ashwin Srinivasan, Stephen Muggleton, Michael J. E. Sternberg, and Ross D. King. Theories for mutagenicity: A study in first-order and feature-based induction. Artificial Intelligence, 85(1–2):277–299, 1996.CrossRefGoogle Scholar
  26. 26.
    M. H. van Emden and R. Kowalski. The Semantics of Predicate Logic as Programming Language. Journal of ACM, 23(4):733–743, 1976.zbMATHCrossRefGoogle Scholar
  27. 27.
    W. Vanhoof, D. De Schreye, and B. Martens. A framework for bottom up specialisation of logic programs. In C. Palamidessi, H. Glaser, and K. Meinke, editors, Proceedings of the Joint International Symposia PLILP/ALP 1998, volume 1490 of Lecture Notes In Computer Science, pages 54–72. Springer-Verlag, 1998.Google Scholar
  28. 28.
    W. Vanhoof, D. De Schreye, and B. Martens. Bottom-up partial deduction of logic programs. The Journal of Functional and Logic Programming, 1999:1–33, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wim Vanhoof
    • 1
  • Remko Tronçon
    • 1
  • Maurice Bruynooghe
    • 1
  1. 1.Department of Computer ScienceK.U.LeuvenBelgium

Personalised recommendations