Club ♣ (Trèfle): A Use Trace Model

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2689)


In this paper we present a use trace model which allows the collection and reuse of user experience, based on a homogeneous and interconnected representation of users, procedures and objects. All these notions form a connected labeled directed graph containing highly connected and explained use traces. This model enables assistance in non trivial, creativity requiring situations. Our model uses the Case Based Reasoning (CBR) paradigm in order to reuse experience. After a formal description of the model we discuss how it can serve to capitalize and re-use experience.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Auriol, R. M. Crowder, R. MacKendrick, R. Row and T. Knudsen: Integrating Case-Based Reasoning and Hypermedia Documentation: An Application for the Diagnosis of a Welding Robot at Odense Steel Shipyard. Lecture Notes in Computer Science, Vol. 1650, (1999), 372–384Google Scholar
  2. 2.
    A. Bénel, E. Egyed-Zs., Y. Prié, S. Calabretto, A. Mille, I. Andréa and P. Jean-Marie: Truth in the Digital Library: From Ontological to Hermeneutical Systems. ECDL 2001 European Conference on Research and Advanced Technology for Digital Libraries, Darmstadt (D), Springer-Verlag, Vol. 2163 (2001), 366–377Google Scholar
  3. 3.
    L. Birnbaum, R. Bareiss, T. Hinrichs and C. Johnson: Interface Design Based on Standardized Task Models. Intelligent User Interfaces, San Francisco CA, USA, ACM, ACM, Vol. (1998), 65–72Google Scholar
  4. 4.
    B. Chandrasekaran, J. R. Josephson and V. R. Benjamins: Ontology of tasks and methods. Eleventh Workshop on Knowledge Acquisition, Modeling and Management (KAW’ 98), Banff, Canada, Vol. (1998), 25Google Scholar
  5. 5.
    J. Charlet, B. Bachimont, J. Bouaud and P. Zweigenbaum: Ontologie et réutilisabilité: expérience et discussion. Acquisition et Ingénierie des Connaissances, Vol. ISBN 2-85428-417-8, (1996), 69–87Google Scholar
  6. 6.
    T. Clarke: Epistemics PC-Pack. (2001)
  7. 7.
    J. Delgado and N. Ishii: Formal Models for Learning User Preferences, A Preliminary Report. International Joint Conference on Artificial Intelligence (IJCAI-99), Workshop on Learning about Users, Stockholm, Sweden, Vol. (1999), 8pGoogle Scholar
  8. 9.
    E. Egyed-Zs., A. Mille, Y. Prié and J.-M. Pinon: Trèfle: un modèle de traces d’utilisation. Ingénierie des Connaissances, Rouen, F, Vol. (2002), 13p.Google Scholar
  9. 10.
    E. Egyed-Zs., Y. Prié, A. Mille and J.-M. Pinon: A graph based audio-visual document annotation and browsing system. RIAO 2000, Paris, France, Vol. 2 (2000), 1381–1389Google Scholar
  10. 11.
    A. Mille: Associer expertise et expérience pour assister les tâches de l’utilisateur. CPE, (1998)Google Scholar
  11. 12.
    Y. Prié: Modélisation de documents audiovisuels en Strates Interconnectées par les annotations pour l’exploitation contextuelle. INSA-Lyon, (1999) 270Google Scholar
  12. 13.
    Y. Prié, T. Limane and A. Mille: Isomorphisme de sous-graphe pour la recherche d’information audiovisuelle contextuelle. 12ème congrès Reconnaissance de Formes et Intelligence Artificielle, RFIA2000, Paris, FR, Vol. 1 (2000), 277–286Google Scholar
  13. 15.
    G. Schreiber and J. Wielemaker: ModelDraw. (2001)
  14. 16.
    B. Trousse: Evaluation of the Prediction Capability of a User behaviour Mining Approach for Adapative Web Sites. In RIAO 2000, 6th Conference on "Content-Based Multimedia Information Access", Paris, C.I.D. C.A.S.I.S., Vol. (2000), 1752–1761Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.LIRIS - Université Lyon 1 Bâtiment NautibusVilleurbanne CEDEXFrance

Personalised recommendations