The Effect of Speed Changes on Route Learning in a Desktop Virtual Environment

  • William S. Albert
  • Ian M. Thornton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)


This study assesses how changes in speed affect the formation of cognitive maps while an observer is learning a route through a desktop virtual environment. Results showed low error rates overall, and essentially no differences in landmark positioning errors between observers in variable speed conditions and a constant speed condition, utilizing both a distance estimation test and mental imagery test. Furthermore, there was a lack of any interactions between speed profiles and trial or route section. These results suggest that the pattern of errors and the nature of learning the route were functionally very similar for both the variable speed conditions and the constant speed condition. We conclude that spatio-temporal representations of a route through a desktop virtual environment can be accurately represented, and are comparable to spatial learning under conditions of constant speed.


Absolute Error Virtual Environment Mental Imagery Speed Condition Speed Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, G. W. and Kirasic, K.C. (1985). Effects of the cognitive organization of route knowledge on judgments of macrospatial distance. Memory and Cognition, 13, 218–227Google Scholar
  2. Avons, S. E. (1998). Serial report and item recognition of novel visual patterns. British Journal of Psychology, 89, 285–308Google Scholar
  3. Berry, M., Percival, I., & Weiss, N. (Eds.) (1987). Dynamical Chaos. NJ: Princeton University PressGoogle Scholar
  4. Burnett, P. (1978). Time cognition and urban travel behavior. Geografiska Annaler, 60B, 107–115Google Scholar
  5. Cutmore, TRH, Hine, T. J., Maberly, K. J., Langford, N. M, Hawgood, G. (2000). Cognitive and gender factors influencing navigation in a virtual environment. International Journal of Human-Computer Studies, 53, 223–249CrossRefGoogle Scholar
  6. Eisler, H. (1980). Experiments on subjective duration 1868-1975: A collection of power function exponents. Psychological Bulletin, 83, 1154–1171CrossRefGoogle Scholar
  7. EngelKamp, J., & Cohen, R. L. (1991). Current issues in memory research. Psychological Research, 53, 175–182CrossRefGoogle Scholar
  8. Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433CrossRefGoogle Scholar
  9. Freyd, J. J. (1987). Dynamic mental representations. Psychological Review, 94, 427–438CrossRefGoogle Scholar
  10. Ghaem O., Mellet, E., Crivello, F., Tzourio, N., Mazoyer, B., Berthoz, A., & Denis, M. (1997). Mental Navigation along memorized routes activates the hippocampus, precuneus and insula. NeuroReport, 8, 739–744CrossRefGoogle Scholar
  11. Holyoak, K. J., & Mah, W. A. (1980). Cognitive reference points in judgments of symbolic magnitude. Cognitive Psychology, 14, 328–352CrossRefGoogle Scholar
  12. Jones, D. M., Farrand, P., Stuart, G. P., & Morris, N. (1965). Functional equivalence of verbal and spatial information in serial short-term memory. Journal of Experimental Psychology: Learning, Memory and Cognition, 21, 1–11Google Scholar
  13. Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention and memory. Psychological Review, 83, 323–355CrossRefGoogle Scholar
  14. Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Harvard University PressGoogle Scholar
  15. Kosslyn, S. M. (1994). Image and brain: The resolution of the imagery debate. Cambridge, MA: MIT PressGoogle Scholar
  16. MacEachren, A. M. (1980). Travel time as the basis of cognitive distance. Professional Geographer, 32, 30–36CrossRefGoogle Scholar
  17. McNamara, T. P., Halpin, J. A., & Hardy, J. K. (1992). Spatial and temporal contributions to the structure of spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 555–564CrossRefGoogle Scholar
  18. Moore, G. T., & Golledge, R. G. (1976). Environmental Knowing. Stroudsburg, Pennsylvania: Dowden, Hutchinson & RossGoogle Scholar
  19. Podgorny, P., & Shepard, R. (1978). Functional representations common to visual perception and imagination. Journal of Experimental Psychology: Human Perception and Performance, 4, 21–35CrossRefGoogle Scholar
  20. Postman, L., & Phillips, L. W. (1965). Short-term temporal changes in free recall. Quarterly Journal of Experimental Psychology, 17, 132–138CrossRefGoogle Scholar
  21. Rock, I., & Victor, J. (1964). Vision & touch: An Experimentally created conflict between the two senses. Science, 143, 594–596CrossRefGoogle Scholar
  22. Rummelhart, D. E., McClelland, J. L., and the PDP Research Group (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol 1: Foundations. MA: MIT PressGoogle Scholar
  23. Säisä, J., Svensson-Gärling, A., Gärling, T., & Lindberg, E.(1986). Intraurban cognitive distance: The relationship between judgments of straight-line distances, travel distances, and travel times. Geographical Analysis, 18, 167–174CrossRefGoogle Scholar
  24. Schiff, W. & Detwiler, M.L. (1979). Information used in judging impeding collision. Perception, 8, 647–658CrossRefGoogle Scholar
  25. Smyth, M. M., & Waller, A. (1998). Movement imagery in rock climbing: Patterns of interference from visual, spatial and kinaesthetic secondary tasks. Applied Cognitive Psychology, 12, 145–157CrossRefGoogle Scholar
  26. Steck S. D., & Mallot H. A. (2000). The role of global and local landmarks in virtual environment navigation. Presence-Teleoperators and Virtual Environments, 9, 69–83CrossRefGoogle Scholar
  27. Tse, P., Intrilligator, J., Cavanagh, P., & Rivest, J. (1980). Attention distorts the perception of time. Investigative Ophthalmology & Visual Science, 38, S1151Google Scholar
  28. Yantis, S., & Jonides, J. (1980). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception & Performance, 10, 601–621CrossRefGoogle Scholar
  29. Zakay, D., & Block, R. A. (1997). Temporal Cognition. Current Directions in Psychological Science, 6(1), 12–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • William S. Albert
    • 1
  • Ian M. Thornton
    • 1
  1. 1.Nissan Cambridge Basic ResearchCambridgeUSA

Personalised recommendations