Granularity Transformations in Wayfinding

  • Sabine Timpf
  • Werner Kuhn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)


Wayfinding in road networks is a hierarchical process. It involves a sequence of tasks, starting with route planning, continuing with the extraction of wayfinding instructions, and leading to the actual driving. From one task level to the next, the relevant road network becomes more detailed. How does the wayfinding process change? Building on a previous, informal hierarchical highway navigation model and on graph granulation theory, we are working toward a theory of granularity transformations for wayfinding processes. The paper shows the first results: a formal ontology of wayfinding at the planning level and an informal model of granularity mappings.


vehicle navigation wayfinding hierarchies activity theory graph granulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Car, A. (1997). Hierarchical Spatial Reasoning: Theoretical Consideration and its Application to Modeling Wayfinding. GeoInfo Series Vol. 10. TU Vienna: Dept. of Geoinformation.Google Scholar
  2. [2]
    Car, A. and A. U. Frank (1995). Formalization of Conceptual Models for GIS using Gofer. Computers, Environment, and Urban Systems 19(2): 89–98.CrossRefGoogle Scholar
  3. [3]
    Erwig, M. (2001). Inductive Graphs and Functional Graph Algorithms. Journal for Functional Programming 11(5): 467–492.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Frank, A. U. (1999). One step up the abstraction ladder: Combining algebras-From functional pieces to a whole. Spatial Information Theory. C. Freksa and D. Mark, Springer-Verlag. Lecture Notes in Computer Science 1661.Google Scholar
  5. [5]
    Frank, A. U. and W. Kuhn (1995). Specifying Open GIS with Functional Languages. Advances in Spatial Databases-4th Internat. Symposium on Large Spatial Databases, SSD’95 (Portland, ME). M. Egenhofer and J. Herring. New York, Springer-Verlag: 184–195.Google Scholar
  6. [6]
    Frank, A. U. and W. Kuhn (1999). A Specification Language for Interoperable GIS. Interoperating Geographic Information Systems. M. F. Goodchild et al., Kluwer: 123–132.Google Scholar
  7. [7]
    Freksa, C. (1991). Qualitative Spatial Reasoning. In D. M. Mark & A. U. Frank (Eds.), Cognitive and Linguistic Aspects of Geographic Space. Dordrecht, The Netherlands: Kluwer Academic Press: 361–372.Google Scholar
  8. [8]
    Guttag, J. V. (1977). Abstract Data Types and the Development of Data Structures. ACM Communications 20(6): 396–404.zbMATHCrossRefGoogle Scholar
  9. [9]
    Kuhn, W., 2001. Ontologies in support of activities in geographical space. International Journal of Geographical Information Science, 15(7): 613–631.CrossRefGoogle Scholar
  10. [10]
    Medak, D. (1997). Lifestyles-A Formal Model. Chorochronos Intensive Workshop’ 97, Petronell-Carnuntum, Austria, Dept. of Geoinformation, TU Vienna.Google Scholar
  11. [11]
    Peterson, J., K. Hammond, et al. (1997). The Haskell 1.4 Report.
  12. [12]
    Stell, J. G., & Worboys, M. F. (1999). Generalizing Graphs using amalgamation and selection. In R. H. Gueting & D. Papadias & F. Lochovsky (Eds.), Advances in Spatial Databases, 6th Symposium, SSD’99 (Vol. 1651 LNCS, pp. 19–32): Springer.Google Scholar
  13. [13]
    Timpf, S. (1999). Abstraction, levels of detail, and hierarchies in map series. Spatial Information Theory-cognitive and computational foundations of geographic information science. C. Freksa and D.M. Mark. Berlin-Heidelberg, Springer-Verlag. Lecture Notes in Computer Science 1661: 125–140.CrossRefGoogle Scholar
  14. [14]
    Timpf, S. (1998). Hierarchical structures in map series. GeoInfo Series Vol. 13. Vienna: Technical University Vienna.Google Scholar
  15. [15]
    Timpf, S. and A. U. Frank (1997). Using Hierarchical Spatial Data Structures for Hierarchical Spatial Reasoning. Spatial Information Theory-A Theoretical Basis for GIS (International Conference COSIT’97). S. C. Hirtle and A. U. Frank. Berlin-Heidelberg, Springer-Verlag. Lecture Notes in Computer Science 1329: 69–83.CrossRefGoogle Scholar
  16. [16]
    Timpf, S., G. S. Volta, et al. (1992). A Conceptual Model of Wayfinding Using Multiple Levels of Abstractions. Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. A. U. Frank, I. Campari and U. Formentini. Lecture Notes in Computer Science 639: 348–367.Google Scholar
  17. [17]
    White, M. (1991). Car navigation systems. Geographical Information Systems: principles and applications. D. J. Maguire, M. F. Goodchild and D. W. Rhind. Essex, Longman Scientific & Technical. 2: 115–125.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sabine Timpf
    • 1
  • Werner Kuhn
    • 2
  1. 1.Department of GeographyUniversity of ZurichZurich
  2. 2.Institute for GeoinformaticsUniversity of MuensterMuenster

Personalised recommendations