Advertisement

The Role of Geographical Slant in Virtual Environment Navigation

  • Sibylle D. Steck
  • Horst F. Mochnatzki
  • Hanspeter A. Mallot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)

Abstract

We investigated the role of geographical slant in simple navigation and spatial memory tasks, using an outdoor virtual environment. The whole environment couldb e slanted by an angle of 4°. Subjects could interact with the virtual environment by pedaling with force-feedback on a bicycle simulator (translation) or by hitting buttons (discrete rotations in 60° steps). After memory acquisition, spatial knowledge was accessed by three tasks: (i) pointing from various positions to the learned goals; (ii) choosing the more elevated of two landmarks from memory; (iii) drawing a sketch map of the environment. The number of navigation errors (wrong motion decisions with respect to the goal) was significantly reduced in the slanted conditions. Furthermore, we found that subjects were able to point to currently invisible targets in virtual environments. Adding a geographical slant improves this performance. We conclude that geographical slant plays a role either in the construction of a spatial memory, or in its readout, or in both.

Keywords

Virtual Environment Slant Angle Return Path Path Type Global Landmark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batschelet, E. (1981). Circular Statistics in Biology. Academic Press, London.zbMATHGoogle Scholar
  2. Brown, P. and Levinson, S. C. (1993). “Uphill” and “Downhill” in Tzeltal. Journal of Linguistic Anthropology, 3(1):46–74.CrossRefGoogle Scholar
  3. Cartwright, B. A. and Collett, T. S. (1982). How honey bees use landmarks to guide their return to a food source. Nature, 295:560–564.CrossRefGoogle Scholar
  4. Creem, S. H. and Proffitt, D. R. (1998). Two memories for geographical slant: Separation and interdependence of action and awareness. Psychonomic Bulletin & Review, 5:22–36.Google Scholar
  5. Gärling, T., Book, A., Lindberg, E., and Arce, C. (1990). Is elevation encoded in cognitive maps. Journal of Environmental Psychology, 10:341–351.CrossRefGoogle Scholar
  6. Gillner, S. and Mallot, H. A. (1998). Navigation and acquisition of spatial knowledge in a virtual maze. Journal of Cognitive Neuroscience, 10:445–463.CrossRefGoogle Scholar
  7. Gouteux, S. and Spelke, E. S. (2001). Children’s use of geometry and landmarks to reorient in an open space. Cognition, 81:119–148.CrossRefGoogle Scholar
  8. Hermer, L. and Spelke, E. S. (1994). A geometric process for spatial reorientation in young children. Nature, 370:57–59.CrossRefGoogle Scholar
  9. Hübner, W. and Mallot, H. A. (2002). Integration of metric place relations in a landmark graph. In Dorronsoro, J. R., editor, International Conference on Artificial Neural Networks (ICANN 2002), Lecture Notes in Computer Science. Springer Verlag.Google Scholar
  10. Janzen, G., Herrmann, T., Katz, S., and Schweizer, K. (2000). Oblique angled intersections and barriers: Navigating through a virtual maze. Lecture Notes in Computer Science, 1849:277–294.Google Scholar
  11. Kuipers, B. (2000). The spatial semantic hierarchy. Artificial Intelligence, 119:191–233.zbMATHCrossRefMathSciNetGoogle Scholar
  12. Levinson, S. C. (1996). Frames of reference and Molyneux’s question: Crosslinguistic studies. In Bloom, P., Peterson, M. A., Nadel, L., and Garrett, M. F., editors, Language and Space, pages 109–169. The MIT Press, Cambridge, MA.Google Scholar
  13. Mallot, H. (2000). Computational Vision. Information Processing in Perception and Visual Behavior, chapter Visual Navigation. The MIT Press, Cambridge, MA.Google Scholar
  14. Mallot, H. A. and Gillner, S. (2000). Route navigation without place recognition: what is recognized in recognition-triggered responses? Perception, 29:43–55.CrossRefGoogle Scholar
  15. Maurer, R. and Séguinot, V. (1995). What is modelling for? A critical review of the models of path integration. Journal of theoretical Biology, 175:457–475.CrossRefGoogle Scholar
  16. Mochnatzki, H. (1999). Die Rolle von Hangneigungen beim Aufbau eines Ortsgedächtnisses: Verhaltensversuche in Virtuellen Umgebungen. Diploma thesis, Fakultät für Biologie, Univ. Tübingen.Google Scholar
  17. Moghaddam, M., Kaminsky, Y. L., Zahalka, A., and Bures, J. (1996). Vestibular navigation directed by the slope of terrain. Proceedings of the National Academy of Sciences, USA, 93:3439–3443.CrossRefGoogle Scholar
  18. Montello, D. R., Richardson, A. E., Hegarty, M., and Provenza, M. (1999). A comparison of methods for estimating directions in egocentric space. Perception, 28:981–1000.CrossRefGoogle Scholar
  19. Müller, M. and Wehner, R. (1988). Path integration in desert ants, cataglyphis fortis. Proceedings of the National Academy of Sciences, USA, 85:5287–5290.CrossRefGoogle Scholar
  20. Proffitt, D. R., Bhalla, M., Gossweiler, R., and Midgett, J. (1995). Perceiving geographical slant. Psychonomic Bulletin & Review, 2:409–428.Google Scholar
  21. Proffitt, D. R., Creem, S. H., and Zosh, W. D. (2001). Seeing mountains in mole hills: geographical-slant perception. Psychological Science, 12:418–423.CrossRefGoogle Scholar
  22. Rossel, S. (1993). Navigation by bees using polarized skylight. Comparative Biochemistry & Physiology, 104A:695–708.CrossRefGoogle Scholar
  23. Steck, S. D. and Mallot, H. A. (2000). The role of global and local landmarks in virtual environment navigation. Presence. Teleoperators and Virtual Environments, 9:69–83.CrossRefGoogle Scholar
  24. Veen, H. A. H. C. v., Distler, H. K., Braun, S. J., and Bultho., H. H. (1998). Navigating through a virtual city: Using virtual reality technology to study human action and perception. Future Generation Computer Systems, 14:231–242.CrossRefGoogle Scholar
  25. Wohlgemuth, S., Ronacher, R., and Wehner, R. (2001). Ant odometry in the third dimension. Nature, 411: 795–798.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sibylle D. Steck
    • 1
  • Horst F. Mochnatzki
    • 2
  • Hanspeter A. Mallot
    • 2
  1. 1.DaimlerChrysler Research & TechnologyUlmGermany
  2. 2.Dept of ZoologyUniversity of TubingenGermany

Personalised recommendations