Interpretation of Intentional Behavior in Spatial Partonomies

  • Christoph Schlieder
  • Anke Werner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)


Information services that are accessed by mobile computers need to compensate the limited potential for direct interaction by some mechanism which analyzes the intentions of the user. Location-aware information services, for instance, take the decision about what is relevant to the user on ground of information about the user’s spatial location. We show that if the regions of the geographic space in which the user moves are structured hierarchically by partonomies a context problem arises. To resolve the problem, not only the user’s location but also his motion must be taken into account. We propose a location model that supports inferring intentional behavior in spatial partonomies from motion patterns and describe the architecture of the corresponding modeling framework.


Motion Pattern Information Service Decomposition Tree Spatial Behavior Elementary Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abowd, G., Atkeson, G., Hong, J., Long, S., Kooper, R., and Pinkerton, M. (1997). Cyberguide: A mobile context-aware tour guide. ACM Wireless Networks, Vol. 3, pp. 421–433.CrossRefGoogle Scholar
  2. 2.
    Cohn, A. (1997). Qualitative spatial representation and reasoning techniques. In Proc. KI-97: Advances in Artificial Intelligence, (pp. 1–30). Springer: Berlin.Google Scholar
  3. 3.
    Davis, E. (1990). Representations of commonsense knowledge. Morgan Kaufman: San Mateo, CA.Google Scholar
  4. 4.
    Davies, N., Mitchell, K., Cheverst, K., and Blair, G. (1998). Developing a context sensitive tourist guide. In Proc. of the First Workshop on Human Computer Interaction with Mobile Devices (pp. 64–68). University of Glasgow, UK.Google Scholar
  5. 5.
    Gabrielli, F., Marti, P., and Petroni, L. (1999). The environment as interface. In M. Caenepeel, and D. Benyon (eds.), Proc. of the i3 Annual Conference: Community of the Future, October 20–22, Siena.Google Scholar
  6. 6.
    Hirtle, S. (1995). Representational structures for cognitive space: Trees, ordered trees and semi-lattices. In: Spatial Information Theory, COSIT-95, (pp. 327–340), Springer: Berlin.Google Scholar
  7. 7.
    Jordan, T., Raubal, M., Gartrell, B., and Egenhofer, M., (1998). An affordance-based model of place in GIS. In: Chrisman and Poiker (eds.), Proc. 8th Int. Symposium on Spatial Data Handling, SDH’98 (pp. 98–109). IUG: Vancouver.Google Scholar
  8. 8.
    Kirste, T., Rieck, A., and Schumann, H. (1997) Die Herausforderungen des Mobile Computing: Die Anwenderperspektive. In: Agenten, Assistenten, Avatare (AAA’97), Darmstadt, Germany.Google Scholar
  9. 9.
    Kuhn, W. (2001). Ontologies in support of activities in geographical space. International Journal of Geographical Information Science, 15(7), pp. 613–631.CrossRefGoogle Scholar
  10. 10.
    Ladkin, P., and Maddux, R. (1994). On binary constraint problems, Journal of the ACM, 41, pp. 435–469.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Musto, A., Stein, K., Eisenkolb, A., Röfer, T., Brauer, W., and Schill, K. (2000). From motion observation to qualitative motion representation. In: Freksa and al. (eds.) Spatial Cognition II (pp. 115–126). Springer: Berlin.CrossRefGoogle Scholar
  12. 12.
    Opermann, R., and Specht, M. (2000). A context-sensitive nomadic information system as an exhibition guide. Proc. of the Second International Symposium on Handheld and Ubiquitous Computing, Bristol.Google Scholar
  13. 13.
    Schilit, B., Theimer, M., and Welch, B. (1993). In: Proc. of the USENIX Mobile and Location-independent Computing Symposium (pp. 129–138). Cambridge, MA.Google Scholar
  14. 14.
    Schlieder, C., Vögele, T., and Visser, U. (2001). Qualitative spatial representation for information retrieval by spatial gazetteers. In: Spatial Information Theory, COSIT-01, (pp. 336–351). Springer: Berlin.Google Scholar
  15. 15.
    Schlieder (1996). Qualitative shape representation. In A. Frank (ed.), Spatial conceptual models for geographic objects with undetermined boundaries (123–140). Taylor & Francis: London.Google Scholar
  16. 16.
    Veron, E., and Levasseur, M. (1991). Ethnographie de l’exposition: L’espace, le corps et le sens. Centre Georges Pompidou Bibliothèque Publique d’Information: Paris.Google Scholar
  17. 17.
    Want, R., Hopper, A., Falco, V., and Gibbons, J. (1992). The active badge location system. ACM Transaction on Information Systems, Vol. 10, No. 1, pp. 91–102.CrossRefGoogle Scholar
  18. 18.
    Winston, M., Chaffin, R. and Herrmann, D. (1987). A taxonomy of part-whole relations. Cognitive Science, 11: 417–444.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Christoph Schlieder
    • 1
  • Anke Werner
    • 1
  1. 1.Technologie-Zentrum InformatikUniversität BremenBremenGermany

Personalised recommendations