Advertisement

Qualitative Spatial Reasoning about Relative Position

The Tradeoff between Strong Formal Properties and Successful Reasoning about Route Graphs
  • Reinhard Moratz
  • Bernhard Nebel
  • Christian Freksa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)

Abstract

Qualitative knowledge about relative orientation can be expressed in form of ternary point relations. In this paper we present a calculus based on ternary relations. It utilises finer distinctions than previously published calculi. It permits differentiations which are useful in realistic application scenarios that cannot directly be dealt with in coarser calculi. There is a price to pay for the advanced options: useful mathematical results for coarser calculi do not hold for the new calculus. This tradeoff is demonstrated by a direct comparison of the new calculus with the flip-flop calculus.

Keywords

Qualitative Spatial Reasoning Cognitive Modelling Robot Navigation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clementini et al., 1997. Clementini, E., Di Felice, P., and Hernandez, D. (1997). Qualitative represenation of positional information. Artificial Intelligence, 95:317–356.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Cohn, 1997. Cohn, A. (1997). Qualitative spatial representation and reasoning techniques. In Brewka, G., Habel, C., and Nebel, B., editors, KI-97: Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence, pages 1–30. Springer-Verlag, Berlin.Google Scholar
  3. Frank, 1991. Frank, A. (1991). Qualitative spatial reasoning with cardinal directions. In Proceedings of 7th Österreichische Artificial-Intelligence-Tagung, pages 157–167, Berlin. Springer.Google Scholar
  4. Freksa, 1992. Freksa, C. (1992). Using Orientation Information for Qualitative Spatial Reasoning. In Frank, A. U., Campari, I., and Formentini, U., editors, Theories and Methods of Spatial-Temporal Reasoning in Geographic Space, pages 162–78. Springer, Berlin.Google Scholar
  5. Isli and Cohn, 2000. Isli, A. and Cohn, A. (2000). Qualitative spatial reasoning: A new approach to cyclic ordering of 2d orientation. Artificial Intelligence, 122:137–187.zbMATHCrossRefMathSciNetGoogle Scholar
  6. Isli and Moratz, 1999. Isli, A. and Moratz, R. (1999). Qualitative Spatial Representation and Reasoning: Algebraic Models for Relative Position. Universität Hamburg, FB Informatik, Technical Report FBI-HH-M-284/99, Hamburg.Google Scholar
  7. Ladkin and Maddux, 1994. Ladkin, P. and Maddux, R. (1994). On binary constraint problems. Journal of the Association for Computing Machinery, 41(3):435–469.zbMATHMathSciNetGoogle Scholar
  8. Ladkin and Reinefeld, 1992. Ladkin, P. and Reinefeld, A. (1992). Effective solution of qualitative constraint problems. Artificial Intelligence, 57:105–124.CrossRefMathSciNetGoogle Scholar
  9. Latombe, 1991. Latombe, J.-C. (1991). Robot Motion Planning. Kluwer.Google Scholar
  10. Levinson, 1996. Levinson, S. C. (1996). Frames of Reference and Molyneux’s Question: Crosslinguistic Evidence. In Bloom, P., Peterson, M., Nadel, L., and Garrett, M., editors, Language and Space, pages 109–169. MIT Press, Cambridge, MA.Google Scholar
  11. Ligozat, 1993. Ligozat, G. (1993). Qualitative triangulation for spatial reasoning. In COSIT 1993, Berlin. Springer.Google Scholar
  12. Ligozat, 1998. Ligozat, G. (1998). Reasoning about cardinal directions. Journal of Visual Languages and Computing, 9:23–44.CrossRefGoogle Scholar
  13. Montanari, 1974. Montanari, U. (1974). Networks of constraints: Fundamental properties and applications to picture processing. Information Sciences, 7:95–132.CrossRefMathSciNetGoogle Scholar
  14. Moratz. Moratz, R. Propagation of distance-orientation intervals: Finding cylces in route graphs. in preparation.Google Scholar
  15. Moratz et al., 2000. Moratz, R., Renz, J., and Wolter, D. (2000). Qualitative spatial reasoning about line segments. In W., H., editor, ECAI 2000. Proceedings of the 14th European Conference on Artifical Intelligence, Amsterdam. IOS Press.Google Scholar
  16. Moratz et al., 2002. Moratz, R., Tenbrink, T., Fischer, F., and Bateman, J. (2002). Spatial knowledge representation for human-robot interaction. this volume.Google Scholar
  17. Musto et al., 1999. Musto, A., Stein, K., Eisenkolb, A., and Röfer, T. (1999). Qualitative and quantitative representations of locomotion and their application in robot navigation. In Proceedings IJCAI-99, pages 1067–1072.Google Scholar
  18. Randell et al., 1992. Randell, D., Cui, Z., and Cohn, A. (1992). A spatial logic based on regions and connection. In Proceedings KR-92, pages 165–176, San Mateo. Morgan Kaufmann.Google Scholar
  19. Remolina and Kuipers, 2001. Remolina, E. and Kuipers, B. (2001). A logical account of causal and topological maps. In Proceedings IJCAI-2001.Google Scholar
  20. Renegar, 1992. Renegar, J. (1992). On the computational complexity and geometry of the first order theory of the reals. part i-iii. Journal of Symbolic Computation, 13:3:255–352.zbMATHMathSciNetCrossRefGoogle Scholar
  21. Renz and Nebel, 1999. Renz, J. and Nebel, B. (1999). On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the region connection calculus. Artificial Intelligence, 108(1–2): 69–123.zbMATHCrossRefMathSciNetGoogle Scholar
  22. Röfer, 1999. Rofer, T. (1999). Route Navigation Using Motion Analysis. In Freksa, C. and Mark, D., editors, COSIT 1999, pages 21–36, Berlin. Springer.Google Scholar
  23. Schlieder, 1995. Schlieder, C. (1995). Reasoning about ordering. In A Frank, W. K., editor, Spatial Information Theory: a theoretical basis for GIS, number 988 in Lecture Notes in Computer Science, pages 341–349, Berlin. Springer Verlag.Google Scholar
  24. Scivos and Nebel, 2001. Scivos, A. and Nebel, B. (2001). Double-crossing: Decidability and computational complexity of a qualitative calculus for navigation. In COSIT 2001, Berlin. Springer.Google Scholar
  25. Shanahan, 1996. Shanahan, M. (1996). Noise and the common sense informatic situation for a mobile robot. In Proceedings AAAI-96.Google Scholar
  26. Sogo et al., 1999. Sogo, T., Ishiguro, H., and Ishida, T. (1999). Acquisition of qualitative spatial representation by visual observation. In Proceedings IJCAI-99, pages 1054–1060.Google Scholar
  27. Vorwerg et al., 1997. Vorwerg, C., Socher, G., Fuhr, T., Sagerer, G., and Rickheit, G. (1997). Projective relations for 3d space: Computational model, application, and psychological evaluation. In AAAI’97, pages 159–164.Google Scholar
  28. Werner et al., 1998. Werner, S., Krieg-Bruckner, B., and Herrmann, T. (1998). Modelling Navigational Knowledge by Route Graphs. In Freksa, C., Habel, C., and Wender, K. F., editors, Spatial Cognition II, Lecture Notes in Artificial Intelligence, pages 295–317. Springer-Verlag, Berlin.Google Scholar
  29. Zimmermann and Freksa, 1996. Zimmermann, K. and Freksa, C. (1996). Qualitative spatial reasoning using orientation, distance, path knowledge. Applied Intelligence, 6:49–58.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Reinhard Moratz
    • 1
  • Bernhard Nebel
    • 2
  • Christian Freksa
    • 1
  1. 1.Universität BremenBremenGermany
  2. 2.Institute for InformaticsUniversity of FreiburgFreiburgGermany

Personalised recommendations