Reasoning and the Visual-Impedance Hypothesis

  • Markus Knauff
  • P. N. Johnson-Laird
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)


The visual-impedance hypothesis postulates that relational expressions which elicit visual images without a spatial component impede reasoning (Knauff and Johnson-Laird, in press). The goal of the present article is to summarize some experimental findings that support this hypothesis. Previous studies yielded four sorts of relations: (1) visuo-spatial relations, such as “above-below”, that are easy to envisage visually and spatially, (2) visual relations, such as “cleaner-dirtier” that are easy to envisage visually but hard to envisage spatially, (3) spatial relations, such as “ancestor of-descendant of”, that are hard to envisage visually but easy to envisage spatially and (4) control relations, such as “better-worse”, that are hard to envisage either visually or spatially. Two behavioral studies showed that visual relations slow down reasoning in comparison with control relations, whereas visuo-spatial and spatial relations yield inferences comparable to those of control relations. The results of an fMRI study showed that in the absence of any correlated visual input (problems were presented acoustically via headphones) reasoning about all four sorts of relations evoked activity in the left middle temporal gyrus, in the right superior parietal cortex, and bilaterally in the precuneus. However, only the visual relations also activated areas of the primary visual cortex corresponding to Brodmann’s area 18 (V2). The findings corroborate the theory that individuals rely on mental models for deductive reasoning, and that visual imagery irrelevant to reasoning impedes the process.


Visual Image Spatial Relation Primary Visual Cortex Mental Imagery Deductive Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, R. A. (1997). Multimodal integration for the representation of space in the posterior parietal cortex. Philosophical transactions of the Royal Society of London. Series B: Biological Sciences, 352, 1421–1428.CrossRefGoogle Scholar
  2. Clement, C., A. & Falmagne, R., J. (1986). Logical reasoning, world knowledge, and mental imagery: Interconnections in cognitive processes. Memory & Cognition, 14, 299–307.Google Scholar
  3. D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1–13.CrossRefGoogle Scholar
  4. Goel, V., & Dolan, R. J. (2001). Functional neuroanatomy of three-term relational reasoning. Neuropsychologia, 39, 901–909.CrossRefGoogle Scholar
  5. Johnson, M. K., & Raye, C. L. (1981). Reality monitoring. Psychological Review, 88, 67–85.CrossRefGoogle Scholar
  6. Johnson-Laird, P. N. (1983). Mental models. Cambridge: Cambridge University Press.Google Scholar
  7. Johnson-Laird, P. N. (1998). Imagery, visualization, and thinking. In J. Hochberg (Ed.), Perception and Cognition at Century’s End (pp. 441–467). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  8. Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction. Hove, UK: Lawrence Erlbaum Associates.Google Scholar
  9. Johnson-Laird, P. N., Byrne, R. M. J., & Tabossi, P. (1989). Reasoning by model: The case of multiple quantification. Psychological Review, 96, 658–673.CrossRefGoogle Scholar
  10. Knauff, M. (2001). Vivid reasoning, mind, and brain. Habilitationsschrift. Freiburg: Philosophische Fakultät I der Universität Freiburg.Google Scholar
  11. Knauff, M., Fangmeier, T., & Ruff, C. C. (2002). Vividness, mental imagery, and deductive reasoning: a study using functional magnetic resonance imaging. Journal of Cognitive Neuroscience, Supplement, 68.Google Scholar
  12. Knauff, M., Fangmeier, T., Ruff, C., & Johnson-Laird, P.N. (2002). Reasoning, models, and images: Behavioral measures and cortical activity. Under submission.Google Scholar
  13. Knauff, M., & Johnson-Laird, P. N. (2000). Visual and spatial representations in spatial reasoning. In Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society (pp. 759–765). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  14. Knauff, M., & Johnson-Laird, P. N. (in press). Visual imagery can impede reasoning. Memory & Cognition.Google Scholar
  15. Knauff, M., Kassubek, J., Mulack, T., & Greenlee, M. W. (2000). Cortical activation evoked by visual mental imagery as measured by functional MRI. NeuroReport, 11, 3957–3962.CrossRefGoogle Scholar
  16. Knauff, M., Mulack, T., Kassubek, J, Salih, H. R., & Greenlee, M. W. (2002). Spatial imagery in deductive reasoning: a functional MRI study. Cognitive Brain Research, 13, 203–212.CrossRefGoogle Scholar
  17. Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Harvard University Press.Google Scholar
  18. Kosslyn, S. M. (1994). Image and brain. Cambridge, MA: MIT Press.Google Scholar
  19. Kroger, J., Cohen, J., and Johnson-Laird, P.N. (2001) A double dissociation between logic and mathematics: a functional magnetic resonance imaging study. Under submission.Google Scholar
  20. Landau, B., & Jackendoff, R. (1993). “What” and “where” in spatial language and spatial cognition. Behavioral and brain sciences, 16, 217–265.CrossRefGoogle Scholar
  21. Logie, R. H. (1995). Visuo-spatial working memory. Hove: Lawrence Erlbaum Associates.Google Scholar
  22. Newcombe, F., & Ratcliff, G. (1989). Disorders of visuospatial analysis. In F. Boller & J. Grafman (Eds.), Handbook of Neuropsychology (Vol. 2, pp. 333–356). Amsterdam: Elsevier.Google Scholar
  23. Newstead, S. E., Pollard, P., & Griggs, R. A. (1986). Response bias in relational reasoning. Bulletin of the Psychonomic Society, 24, 95–98.Google Scholar
  24. Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test. Cognitive Psychology, 33, 43–63.CrossRefGoogle Scholar
  25. Pylyshyn, Z. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychological review, 88, 16–45.CrossRefGoogle Scholar
  26. Richardson, J. T. E. (1987). The role of mental imagery in models of transitive inference. British Journal of Psychology, 78, 189–203.Google Scholar
  27. Rueckl, J. G., Cave, K. R., & Kosslyn, S. M. (1989). Why are “what” and “where” processed by separate cortical visual systems? A computational investigation. Journal of Cognitive Neuroscience, 1, 171–186.CrossRefGoogle Scholar
  28. Shaver, P., Pierson, L., & Lang, S. (1974). Converging evidence for the functional significance of imagery in problem solving. Cognition, 3, 359–375.CrossRefGoogle Scholar
  29. Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT Press.Google Scholar
  30. Sternberg, R. J. (1980). Representation and process in linear syllogistic reasoning. Journal of Experimental Psychology: General, 109, 119–159.CrossRefGoogle Scholar
  31. Ungerleider, L. G. (1996). Funcitonal brain imaging studies of cortical mechanisms for memory. Science, 270, 769–775.CrossRefGoogle Scholar
  32. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale & R. J. W. Mansfield (Eds.), Analysis of Visual Behaviour (pp. 549–587). Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Markus Knauff
    • 1
  • P. N. Johnson-Laird
    • 2
  1. 1.Center for Cognitive ScienceFreiburg UniversityFreiburgGermany
  2. 2.Department of PsychologyPrinceton UniversityGreen Hall, PrincetonUSA

Personalised recommendations