Advertisement

Reasoning about Cyclic Space: Axiomatic and Computational Aspects

  • Philippe Balbiani
  • Jean-François Condotta
  • Gérard Ligozat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)

Abstract

In this paper we propose models of the axioms for linear and cyclic orders. First, we describe explicitly the relations between linear and cyclic models, from a logical point of view. The second part of the paper is concerned with qualitative constraints: we study the cyclic point algebra. This formalism is based on ternary relations which allow to express cyclic orientations. We give some results of complexity about the consistency problem in this formalism. The last part of the paper is devoted to conceptual spaces. The notion of a conceptual space is related to the complexity properties of temporal and spatial qualitative formalisms, including the cyclic point algebra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. Allen. Maintaining knowledge about temporal intervals. Comm. of the ACM, 26(11):832–843, 1983.zbMATHCrossRefGoogle Scholar
  2. 2.
    Ph. Balbiani, J.-F. Condotta, and L. Fariñas del Cerro. A model for reasoning about bidimensional temporal relations. In Proc. of KR-98, pages 124–130, 1998.Google Scholar
  3. 3.
    Ph. Balbiani, J.-F. Condotta, and L. Fariñas del Cerro. A new tractable subclass of the rectangle algebra. In Proc. of IJCAI-99, pages 442–447, 1999.Google Scholar
  4. 4.
    Ph. Balbiani, J.-F. Condotta, and L. Fariñas del Cerro. Spatial reasoning about points in a multidimensional setting. In Proc. of the IJCAI-99 Workshop on Spatial and Temporal Reasoning, pages 105–113, 1999.Google Scholar
  5. 5.
    Ph. Balbiani, J.-F. Condotta, and L. Fariñas del Cerro. A tractable subclass of the block algebra: constraint propagation and preconvex relations. In Proc. of the Ninth Portuguese Conference on Artificial Intelligence (EPIA’99), pages 75–89, 1999.Google Scholar
  6. 6.
    Ph. Balbiani, J.-F. Condotta, and G. Ligozat. Reasoning about Generalized Intervals: Horn Representation and Tractability. In Scott Goodwin and Andre Trudel, editors, Proceedings of the Seventh International Workshop on Temporal Representation and Reasoning (TIME-00), pages 23–30, Cape Breton, Nova Scotia, Canada, 2000. IEEE Computer Society.Google Scholar
  7. 7.
    Ph. Balbiani and A. Osmani. A model for reasoning about topologic relations between cyclic intervals. In Proc. of KR-2000, Breckenridge, Colorado, 2000.Google Scholar
  8. 8.
    A. U. Frank. Qualitative spatial reasoning about distances and directions in geographic space. J. of Visual Languages and Computing, 3:343–371, 1992.CrossRefGoogle Scholar
  9. 9.
    P. Gardenfors. Conceptual Spaces: The Geometry of Thought. The MIT Press, 2000.Google Scholar
  10. 10.
    M. R. Garey and D. S. Johnson. Computers and intractability; a guide to the theory of NP-completeness. W.H. Freeman, 1979.Google Scholar
  11. 11.
    A. Hård and L. Sivik. NCS-natural color system: a Swedish standard for color notation. Color Research and Application, (6):129–138, 1981.CrossRefGoogle Scholar
  12. 12.
    A. Isli and A. G. Cohn. A new approach to cyclic ordering of 2D orientations using ternary relation algebras. Artificial Intelligence, 122(1–2):137–187, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    P. Ladkin. The Logic of time representation. PhD thesis, University of California, Berkeley, 1987.Google Scholar
  14. 14.
    C. Langford. Some theorems on deducibility. Ann. Math. Ser., 28:16–40, 1927.CrossRefMathSciNetGoogle Scholar
  15. 15.
    G. Ligozat. Weak Representations of Interval Algebras. In Proc. of AAAI-90, pages 715–720, 1990.Google Scholar
  16. 16.
    G. Ligozat. On generalized interval calculi. In Proc. of AAAI-91, pages 234–240, 1991.Google Scholar
  17. 17.
    G. Ligozat. Tractable relations in temporal reasoning: pre-convex relations. In F. D. Anger, H. Gü sgen, and G. Ligozat, editors, Proc. of the ECAI-94 Workshop on Spatial and Temporal Reasoning, pages 99–108, Amsterdam, 1994.Google Scholar
  18. 18.
    G. Ligozat. A New Proof of Tractability for ORD-Horn Relations. In Proc. of AAAI-96, pages 395–401, 1996.Google Scholar
  19. 19.
    G. Ligozat. “Corner” relations in Allen’s algebra. CONSTRAINTS: An International Journal, 3:165–177, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    G. Ligozat. Reasoning about Cardinal Directions. J. of Visual Languages and Computing, 9:23–44, 1998.CrossRefGoogle Scholar
  21. 21.
    G. Ligozat. Simple Models for Simple Calculi. In C. Freksa and D.M. Mark, editors, Proc. of COSIT’99, number 1661 in LNCS, pages 173–188. Springer Verlag, 1999.Google Scholar
  22. 22.
    R. Moratz, J. Renz, and D. Wolter. Qualitative spatial reasoning about line segments. In Horn. W., editor, ECAI 2000. Proceedings of the 14th European Conference on Artifical Intelligence, Amsterdam, 2000. IOS Press.Google Scholar
  23. 23.
    B. Nebel and H.-J. Burckert. Reasoning about temporal relations: A maximal tractable subclass of Allen’s interval algebra. J. of the ACM, 42(1):43–66, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    R. Röhrig. Representation and processing of qualitative orientation knowledge. In Gerhard Brewka, Christopher Habel, and Bernhard Nebel, editors, Proceedings of the 21st Annual German Conference on Artificial Intelligence (KI-97): Advances in Artificial Intelligence, volume 1303 of LNAI, pages 219–230, Berlin, September 9–12 1997. Springer.Google Scholar
  25. 25.
    C. Schlieder. Representing visible locations for qualitative navigation. In N. Piera Carreté and M. G. Singh, editors, Proceedings of the III IMACS International Workshop on Qualitative Reasoning and Decision Technologies—QUARDET’93—, pages 523–532, Barcelona, June 1993. CIMNE.Google Scholar
  26. 26.
    C. Schlieder. Reasoning about ordering. In Proc. of COSIT’95, 1995.Google Scholar
  27. 27.
    L. Sivik and C. Taft. Color naming: a mapping in the NCS of common color terms. Scandinavian Journal of Psychology, (35):144–164, 1994.CrossRefGoogle Scholar
  28. 28.
    T. Sogo, H. Ishiguro, and T Ishida. Acquisition of qualitative spatial representation by visual observation. In Proceedings IJCAI-99, pages 1054–1060, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Philippe Balbiani
    • 1
  • Jean-François Condotta
    • 2
  • Gérard Ligozat
    • 2
  1. 1.Institut de recherche en informatique de ToulouseToulouse Cedex 4France
  2. 2.Laboratoire d’informatique pour la mécanique et les sciences de l’ingénieurOrsay CedexFrance

Personalised recommendations