Pictorial Representations of Routes: Chunking Route Segments during Comprehension

  • Alexander Klippel
  • Heike Tappe
  • Christopher Habel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)


Route directions are usually conveyed either by graphical means, i.e. by illustrating the route in a map or drawing a sketch-maps or, linguistically by giving spoken or written route instructions, or by combining both kinds of external representations. In most cases route directions are given in advance, i.e. prior to the actual traveling. But they may also be communicated quasisimultaneously to the movement along the route, for example, in the case of incar navigation systems. We dub this latter kind accompanying route directions. Accompanying route direction may be communicated in a dialogue, i.e. with hearer feedback, or, in a monologue, i.e. without hearer feedback. In this article we focus on accompanying route directions without hearer feedback. We start with theoretical considerations from spatial cognition research about the interaction between internal and external representations interconnecting linguistic aspects of verbal route directions with findings from cognitive psychology on route knowledge. In particular we are interested in whether speakers merge elementary route segments into higher order chunks in accompanying route directions. This process, which we identify as spatial chunking, is subsequently investigated in a case study. We have speakers produce accompanying route directions without hearer feedback on the basis of a route that is presented in a spatially veridical map. We vary presentation mode of the route: In the static mode the route in presented as a discrete line, in the dynamic mode, it is presented as a moving dot. Similarities across presentation modes suggest overall organization principles for route directions, which are both independent of the type of route direction—in advance versus accompanying—and of presentation mode—static versus dynamic. We conclude that spatial chunking is a robust and efficient conceptual process that is partly independent of preplanning.


route map map-user-interaction animation route directions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawalla, M. (2001). Visualizing route maps. PhD thesis, Stanford University.Google Scholar
  2. Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  3. Augustine, M. & Coovert, M. (1991). Simulation and information order as influences in the development of mental models. SIGCHI Bulletin, 23, 33–35.CrossRefGoogle Scholar
  4. Barfield, W.L.R, Lim, R. & Rosenberg, C. (1990). Visual enhancements and the geometric field of view as factors in the design of three-dimensional perspective display. Proceedings of the Human factors society—34 th annual meeting. Orlando, Florida. (pp. 1470–1473). Santa Monica, CA: Human Factors Society.Google Scholar
  5. Barkowsky, T., & Freksa, C. (1997). Cognitive requirements on making and interpreting maps. In S. Hirtle & A. Frank (Eds.), Spatial information theory: A theoretical basis for GIS. (pp. 347–361). Berlin: Springer.CrossRefGoogle Scholar
  6. Berendt, B., Rauh, R., & Barkowsky, T. (1998). Spatial thinking with geographic maps: An empirical study. In H. Czap, P. Ohly, & S. Pribbenow (Eds.), Herausforderungen an die Wissensorganisation: Visualisierung, multimediale Dokumente, Internetstrukturen (pp. 63–73). Würzburg: ERGON-Verlag.Google Scholar
  7. Bell, S. (1995). Cartographic presentation as an aid to spatial knowledge acquisition in unknown environments. M. A. Thesis. Geography Department, UC Santa Barbara.Google Scholar
  8. Bogacz, S. & Trafton, G. (in press). Connecting internal and external representations: Spatial Transformations of Scientific Visualizations. Foundations of Science.Google Scholar
  9. Bollmann, J. (1993). Geo-Informationssysteme und kartographische Informationsverarbeitung. In B. Hornetz & D. Zimmer (eds.), Beiträge zur Kultur-und Regionalgeographie. Festschrift für Ralph Jä tzold. (pp. 63–73). Trier: Universität Trier.Google Scholar
  10. Buhl, H.M., Katz, S., Schweizer, K. & Herrmann, T. (2000). Einflüsse des Wissenserwerbs auf die Linearisierung beim Sprechen über räumliche Anordnungen. Zeitschrift für Experimentelle Psychologie, 47, 17–33.Google Scholar
  11. Casakin, H., Barkowsky, T., Klippel, A., & Freksa, C. (2000). Schematic maps as wayfinding aids. In C. Freksa, W. Brauer, C. Habel, & K.F. Wender (Eds.), Spatial Cognition II — Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications (pp. 54–71). Berlin: Springer.Google Scholar
  12. Daniel, M.-P. & Denis, M. (1998). Spatial descriptions as navigational aids: A cognitive analysis of route directions. Kognitionswissenschaft, 7, 45–52.CrossRefGoogle Scholar
  13. Denis, M. (1997). The description of routes: A cognitive approach to the production of spatial discourse. Cahiers de Psychologie Cognitive, 16, 409–458.Google Scholar
  14. Denis, M., Pazzaglia, F., Cornoldi, C. & Bertolo, L. (1999). Spatial discourse and navigation: An analysis of route directions in the city of Venice. Applied Cognitive Psychology, 13, 145–174.CrossRefGoogle Scholar
  15. Eschenbach, C., Habel, C. & Kulik, L. (1999). Representing simple trajectories as oriented curves. In A. N. Kumar & I. Russell (eds.), FLAIRS-99. Proceedings of the 12 th International Florida AI Research Society Conference. (pp. 431–436). Orlando, Florida.Google Scholar
  16. Freksa, C. (1999). Spatial aspects of task-specific wayfinding maps: A representation-specific perspective. In J. S. Gero & B. Tversky (eds.), Proceedings of visual and spatial reasoning in design. (pp. 15–32). University of Sydney: Key Centre of Design Computing and Cognition.Google Scholar
  17. Ghaëm, O., Mellet, E., Tzourio, N., Bricogne, S., Etard, O., Tirel, O., Beaudoin, V., Mazoyer, B., Berthoz, A., & Denis, M. (1998). Mental exploration of an environment learned from a map: A PET study. Fourth International Conference on Functional Mapping of the Human Brain, Montréal, Canada, 7–12 juin 1998. NeuroImage, 7, 115.Google Scholar
  18. Golledge, R.G. (1999). Human wayfinding and cognitive maps. In Golledge, R.G. (ed.), Wayfinding behavior. (pp. 5–45). John Hopkins University Press: Baltimore.Google Scholar
  19. Golledge, R.G.; Dougherty, V. & Bell, S. (1995). Acquiring spatial knowledge: Survey versus route-based knowledge in unfamiliar environments. Annals of the Association of American Geographers, 1, 134–158.Google Scholar
  20. Habel, C. (1988). Prozedurale Aspekte der Wegplanung und Wegbeschreibung. In H. Schnelle / G. Rickheit (Hrsg.): Sprache in Mensch und Computer (pp. 107–133). Westdeutscher Verlag: Opladen.Google Scholar
  21. Habel, C. & Tappe, H. (1999). Processes of segmentation and linearization in describing events. In R. Klabunde & C. v. Stutterheim (eds.), Representations and processes in language production. (pp. 117–152). Wiesbaden: Deutscher Universitätsverlag.Google Scholar
  22. Hegarty, M. (1992). Mental animation: Inferring motion from static diagrams of mechanical systems. Journal of Experimental Psychology: Learning, Memory and Cognition, 18(5), 1084–1102.CrossRefGoogle Scholar
  23. Herrmann, T., Schweizer, K., Janzen, G., & Katz, S. (1998). Routen-und Überblickswissen — konzeptuelle Überlegungen. Kognitionswissenschaft, 7, 145–159.CrossRefGoogle Scholar
  24. Herrmann, Th., Buhl, H.M. & Schweizer, K. (1995). Zur blickpunktbezogenen Wissensrepräsentation: Der Richtungseffekt. Zeitschrift für Psychologie, 203, 1–23Google Scholar
  25. Hunt, E., & Waller, D. (1999). Orientation and wayfinding: A review (ONR technical report N00014-96-0380). Arlington, VA: Office of Naval Research.Google Scholar
  26. Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.Google Scholar
  27. Jones, S. & Scaife, M. (2000). Animated diagrams: An investigation into the cognitive effects of using animation to illustrate dynamic processes. In M. Anderson, P. Cheng & V. Haarslev (eds.): Theory and application of diagrams: First International Conference, Diagrams 2000, Edinburgh, Scotland (pp. 231–244). Berlin: Springer.Google Scholar
  28. Kaiser, M., Proffitt, D., Whelan, S. and Hecht, H. (1992). Influence of animation on dynamical judgements. Journal of Experimental Psychology: Human Perception and Performance, 18, 669–690.CrossRefGoogle Scholar
  29. Kosslyn, S. M. (1980). Image and Mind. Cambridge, MA.: Harvard UP.Google Scholar
  30. Levelt, W.J.M. (1989). Speaking: From intention to articulation. MIT Press: Cambridge, MA.Google Scholar
  31. Lovelace, K.L.; Hegarty, M. & Montello, D.R. (1999). Elements of good route directions in familiar and unfamiliar environments. In C. Freksa & D.M. Mark (eds), Spatial information theory. Cognitive and computational foundations of geographic information science. (pp. 65–82). Berlin: Springer.CrossRefGoogle Scholar
  32. Maaß, W. (1994). From visual perception to multimodal communication: Incremental route descriptions. AI Review Journal, 8, 159–174.Google Scholar
  33. Maaß, W.; Baus, J. & Paul, J. (1995). Visual grounding of route descriptions in dynamic environments. In Proceedings of the AAAI Fall Symposium on Computational Models for Integrating Language and Vision. MIT, Cambridge.Google Scholar
  34. MacEachren, A.M. (1995). How maps work: Representation, visualization, and design. New York: The Guilford Press.Google Scholar
  35. McNamara, T.; Hardy, J. K. & Hirtle, S. C. (1989). Subjective hierarchies in spatial memory. Journal of Experimental Psychology: Learning, Memory and Cognition, 15. 211–227CrossRefGoogle Scholar
  36. Morrison, J.B., Tversky, B., Betrancourt, M. (2000). Animation: Does it facilitate learning? In AAAI Workshop on Smart Graphics, Stanford, March 2000.Google Scholar
  37. Newcombe, N. S. & Huttenlocher, J. (2000). Making space. Cambridge, MA: MIT-Press.Google Scholar
  38. Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.Google Scholar
  39. Presson, C.C. & Montello, D.R. (1988). Points of reference in spatial cognition: Stalking elusive landmarks. British Journal of Developmental Psychology, 6, 378–381.Google Scholar
  40. Scaife, M. & Rogers, Y. (1996) External cognition: How do graphical representations work? International Journal of Human-Computer Studies, 45, 185–213.CrossRefGoogle Scholar
  41. Schmidtke, H.R., Tschander, L., Eschenbach, C, Habel, C. (in print). Change of orientation, In E. van der Zee & J. Slack (eds.). Representing direction in language and space. Oxford: Oxford University Press.Google Scholar
  42. Schumacher, S., Wender, K.F., & Rothkegel, R. (2000). Influences of context on memory of routes. In C. Freksa, W. Brauer, C. Habel, & K.F. Wender (eds.), Spatial Cognition II-Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications. (pp. 348–362). Berlin: Springer.Google Scholar
  43. Steven, A. & Coupe, P., (1978). Distortion in judged spatial relations. Cognitive Psychology, 10, 422–437CrossRefGoogle Scholar
  44. Tappe, H. (2000). Perspektivenwahl in Beschreibungen dynamischer und statischer Wegeskizzen. In C. Habel & C. von Stutterheim (eds.), Räumliche Konzepte und sprachliche Strukturen. (pp. 69–95). Tübingen: Max Niemeyer Verlag.Google Scholar
  45. Taylor, H. & Tversky, B. (1992). Descriptions and depictions of environments. Memory and Cognition, 20, 483–496.Google Scholar
  46. Thorndyke, P.W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–589.CrossRefGoogle Scholar
  47. Tschander, L.B., Schmidtke, H.R., Eschenbach, C., Habel, C. & Kulik, L. (2002). A geometric agent following route instructions. In C. Freksa, W. Brauer, C. Habel & K. Wender (eds.), Spatial Cognition III. Berlin: Springer.Google Scholar
  48. Tversky B. (1993). Cognitive maps, cognitive collages and spatial mental models. In A. Frank & I. Campari (eds.) Spatial information theory: A theoretical basis for GIS. (pp. 14–24). Berlin: Springer.Google Scholar
  49. Tversky, B. & Lee, P.U. (1999). Pictorial and verbal tools for conveying routes. In C. Freksa, D.M. Mark (eds.), Spatial information theory. Cognitive and computational foundations of geographic information science. (pp. 51–64). Berlin: SpringerCrossRefGoogle Scholar
  50. Wahlster, W.; Blocher, A.; Baus, J.; Stopp, E. & Speiser, H. (1998). Ressourcenadaptive Objektlokalisation: Sprachliche Raumbeschreibung unter Zeitdruck. In Kognitionswissenschaft, 7, 111–117.CrossRefGoogle Scholar
  51. Wahlster, W.; Baus, J.; Kray, C. & Krüger, A. (2001). REAL: Ein ressourcenadaptierendes mobiles Navigationssystem, Informatik Forschung und Entwicklung, 16, 233–241.zbMATHCrossRefGoogle Scholar
  52. Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 21, 179–217.CrossRefGoogle Scholar
  53. Zhang, J. & Norman, D. A. (1994). Representation in distributed cognitive tasks. Cognitive Science, 18, 87–122.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alexander Klippel
    • 1
  • Heike Tappe
    • 1
  • Christopher Habel
    • 1
  1. 1.Department for Informatics and Cognitive Science ProgramUniversity of HamburgEurope

Personalised recommendations