Skip to main content

Pictorial Representations of Routes: Chunking Route Segments during Comprehension

  • Conference paper
  • First Online:
Spatial Cognition III (Spatial Cognition 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2685))

Included in the following conference series:

Abstract

Route directions are usually conveyed either by graphical means, i.e. by illustrating the route in a map or drawing a sketch-maps or, linguistically by giving spoken or written route instructions, or by combining both kinds of external representations. In most cases route directions are given in advance, i.e. prior to the actual traveling. But they may also be communicated quasisimultaneously to the movement along the route, for example, in the case of incar navigation systems. We dub this latter kind accompanying route directions. Accompanying route direction may be communicated in a dialogue, i.e. with hearer feedback, or, in a monologue, i.e. without hearer feedback. In this article we focus on accompanying route directions without hearer feedback. We start with theoretical considerations from spatial cognition research about the interaction between internal and external representations interconnecting linguistic aspects of verbal route directions with findings from cognitive psychology on route knowledge. In particular we are interested in whether speakers merge elementary route segments into higher order chunks in accompanying route directions. This process, which we identify as spatial chunking, is subsequently investigated in a case study. We have speakers produce accompanying route directions without hearer feedback on the basis of a route that is presented in a spatially veridical map. We vary presentation mode of the route: In the static mode the route in presented as a discrete line, in the dynamic mode, it is presented as a moving dot. Similarities across presentation modes suggest overall organization principles for route directions, which are both independent of the type of route direction—in advance versus accompanying—and of presentation mode—static versus dynamic. We conclude that spatial chunking is a robust and efficient conceptual process that is partly independent of preplanning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawalla, M. (2001). Visualizing route maps. PhD thesis, Stanford University.

    Google Scholar 

  • Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Augustine, M. & Coovert, M. (1991). Simulation and information order as influences in the development of mental models. SIGCHI Bulletin, 23, 33–35.

    Article  Google Scholar 

  • Barfield, W.L.R, Lim, R. & Rosenberg, C. (1990). Visual enhancements and the geometric field of view as factors in the design of three-dimensional perspective display. Proceedings of the Human factors society—34 th annual meeting. Orlando, Florida. (pp. 1470–1473). Santa Monica, CA: Human Factors Society.

    Google Scholar 

  • Barkowsky, T., & Freksa, C. (1997). Cognitive requirements on making and interpreting maps. In S. Hirtle & A. Frank (Eds.), Spatial information theory: A theoretical basis for GIS. (pp. 347–361). Berlin: Springer.

    Chapter  Google Scholar 

  • Berendt, B., Rauh, R., & Barkowsky, T. (1998). Spatial thinking with geographic maps: An empirical study. In H. Czap, P. Ohly, & S. Pribbenow (Eds.), Herausforderungen an die Wissensorganisation: Visualisierung, multimediale Dokumente, Internetstrukturen (pp. 63–73). Würzburg: ERGON-Verlag.

    Google Scholar 

  • Bell, S. (1995). Cartographic presentation as an aid to spatial knowledge acquisition in unknown environments. M. A. Thesis. Geography Department, UC Santa Barbara.

    Google Scholar 

  • Bogacz, S. & Trafton, G. (in press). Connecting internal and external representations: Spatial Transformations of Scientific Visualizations. Foundations of Science.

    Google Scholar 

  • Bollmann, J. (1993). Geo-Informationssysteme und kartographische Informationsverarbeitung. In B. Hornetz & D. Zimmer (eds.), Beiträge zur Kultur-und Regionalgeographie. Festschrift für Ralph Jä tzold. (pp. 63–73). Trier: Universität Trier.

    Google Scholar 

  • Buhl, H.M., Katz, S., Schweizer, K. & Herrmann, T. (2000). Einflüsse des Wissenserwerbs auf die Linearisierung beim Sprechen über räumliche Anordnungen. Zeitschrift für Experimentelle Psychologie, 47, 17–33.

    Google Scholar 

  • Casakin, H., Barkowsky, T., Klippel, A., & Freksa, C. (2000). Schematic maps as wayfinding aids. In C. Freksa, W. Brauer, C. Habel, & K.F. Wender (Eds.), Spatial Cognition II — Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications (pp. 54–71). Berlin: Springer.

    Google Scholar 

  • Daniel, M.-P. & Denis, M. (1998). Spatial descriptions as navigational aids: A cognitive analysis of route directions. Kognitionswissenschaft, 7, 45–52.

    Article  Google Scholar 

  • Denis, M. (1997). The description of routes: A cognitive approach to the production of spatial discourse. Cahiers de Psychologie Cognitive, 16, 409–458.

    Google Scholar 

  • Denis, M., Pazzaglia, F., Cornoldi, C. & Bertolo, L. (1999). Spatial discourse and navigation: An analysis of route directions in the city of Venice. Applied Cognitive Psychology, 13, 145–174.

    Article  Google Scholar 

  • Eschenbach, C., Habel, C. & Kulik, L. (1999). Representing simple trajectories as oriented curves. In A. N. Kumar & I. Russell (eds.), FLAIRS-99. Proceedings of the 12 th International Florida AI Research Society Conference. (pp. 431–436). Orlando, Florida.

    Google Scholar 

  • Freksa, C. (1999). Spatial aspects of task-specific wayfinding maps: A representation-specific perspective. In J. S. Gero & B. Tversky (eds.), Proceedings of visual and spatial reasoning in design. (pp. 15–32). University of Sydney: Key Centre of Design Computing and Cognition.

    Google Scholar 

  • Ghaëm, O., Mellet, E., Tzourio, N., Bricogne, S., Etard, O., Tirel, O., Beaudoin, V., Mazoyer, B., Berthoz, A., & Denis, M. (1998). Mental exploration of an environment learned from a map: A PET study. Fourth International Conference on Functional Mapping of the Human Brain, Montréal, Canada, 7–12 juin 1998. NeuroImage, 7, 115.

    Google Scholar 

  • Golledge, R.G. (1999). Human wayfinding and cognitive maps. In Golledge, R.G. (ed.), Wayfinding behavior. (pp. 5–45). John Hopkins University Press: Baltimore.

    Google Scholar 

  • Golledge, R.G.; Dougherty, V. & Bell, S. (1995). Acquiring spatial knowledge: Survey versus route-based knowledge in unfamiliar environments. Annals of the Association of American Geographers, 1, 134–158.

    Google Scholar 

  • Habel, C. (1988). Prozedurale Aspekte der Wegplanung und Wegbeschreibung. In H. Schnelle / G. Rickheit (Hrsg.): Sprache in Mensch und Computer (pp. 107–133). Westdeutscher Verlag: Opladen.

    Google Scholar 

  • Habel, C. & Tappe, H. (1999). Processes of segmentation and linearization in describing events. In R. Klabunde & C. v. Stutterheim (eds.), Representations and processes in language production. (pp. 117–152). Wiesbaden: Deutscher Universitätsverlag.

    Google Scholar 

  • Hegarty, M. (1992). Mental animation: Inferring motion from static diagrams of mechanical systems. Journal of Experimental Psychology: Learning, Memory and Cognition, 18(5), 1084–1102.

    Article  Google Scholar 

  • Herrmann, T., Schweizer, K., Janzen, G., & Katz, S. (1998). Routen-und Überblickswissen — konzeptuelle Überlegungen. Kognitionswissenschaft, 7, 145–159.

    Article  Google Scholar 

  • Herrmann, Th., Buhl, H.M. & Schweizer, K. (1995). Zur blickpunktbezogenen Wissensrepräsentation: Der Richtungseffekt. Zeitschrift für Psychologie, 203, 1–23

    Google Scholar 

  • Hunt, E., & Waller, D. (1999). Orientation and wayfinding: A review (ONR technical report N00014-96-0380). Arlington, VA: Office of Naval Research.

    Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Jones, S. & Scaife, M. (2000). Animated diagrams: An investigation into the cognitive effects of using animation to illustrate dynamic processes. In M. Anderson, P. Cheng & V. Haarslev (eds.): Theory and application of diagrams: First International Conference, Diagrams 2000, Edinburgh, Scotland (pp. 231–244). Berlin: Springer.

    Google Scholar 

  • Kaiser, M., Proffitt, D., Whelan, S. and Hecht, H. (1992). Influence of animation on dynamical judgements. Journal of Experimental Psychology: Human Perception and Performance, 18, 669–690.

    Article  Google Scholar 

  • Kosslyn, S. M. (1980). Image and Mind. Cambridge, MA.: Harvard UP.

    Google Scholar 

  • Levelt, W.J.M. (1989). Speaking: From intention to articulation. MIT Press: Cambridge, MA.

    Google Scholar 

  • Lovelace, K.L.; Hegarty, M. & Montello, D.R. (1999). Elements of good route directions in familiar and unfamiliar environments. In C. Freksa & D.M. Mark (eds), Spatial information theory. Cognitive and computational foundations of geographic information science. (pp. 65–82). Berlin: Springer.

    Chapter  Google Scholar 

  • Maaß, W. (1994). From visual perception to multimodal communication: Incremental route descriptions. AI Review Journal, 8, 159–174.

    Google Scholar 

  • Maaß, W.; Baus, J. & Paul, J. (1995). Visual grounding of route descriptions in dynamic environments. In Proceedings of the AAAI Fall Symposium on Computational Models for Integrating Language and Vision. MIT, Cambridge.

    Google Scholar 

  • MacEachren, A.M. (1995). How maps work: Representation, visualization, and design. New York: The Guilford Press.

    Google Scholar 

  • McNamara, T.; Hardy, J. K. & Hirtle, S. C. (1989). Subjective hierarchies in spatial memory. Journal of Experimental Psychology: Learning, Memory and Cognition, 15. 211–227

    Article  Google Scholar 

  • Morrison, J.B., Tversky, B., Betrancourt, M. (2000). Animation: Does it facilitate learning? In AAAI Workshop on Smart Graphics, Stanford, March 2000.

    Google Scholar 

  • Newcombe, N. S. & Huttenlocher, J. (2000). Making space. Cambridge, MA: MIT-Press.

    Google Scholar 

  • Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Presson, C.C. & Montello, D.R. (1988). Points of reference in spatial cognition: Stalking elusive landmarks. British Journal of Developmental Psychology, 6, 378–381.

    Google Scholar 

  • Scaife, M. & Rogers, Y. (1996) External cognition: How do graphical representations work? International Journal of Human-Computer Studies, 45, 185–213.

    Article  Google Scholar 

  • Schmidtke, H.R., Tschander, L., Eschenbach, C, Habel, C. (in print). Change of orientation, In E. van der Zee & J. Slack (eds.). Representing direction in language and space. Oxford: Oxford University Press.

    Google Scholar 

  • Schumacher, S., Wender, K.F., & Rothkegel, R. (2000). Influences of context on memory of routes. In C. Freksa, W. Brauer, C. Habel, & K.F. Wender (eds.), Spatial Cognition II-Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications. (pp. 348–362). Berlin: Springer.

    Google Scholar 

  • Steven, A. & Coupe, P., (1978). Distortion in judged spatial relations. Cognitive Psychology, 10, 422–437

    Article  Google Scholar 

  • Tappe, H. (2000). Perspektivenwahl in Beschreibungen dynamischer und statischer Wegeskizzen. In C. Habel & C. von Stutterheim (eds.), Räumliche Konzepte und sprachliche Strukturen. (pp. 69–95). Tübingen: Max Niemeyer Verlag.

    Google Scholar 

  • Taylor, H. & Tversky, B. (1992). Descriptions and depictions of environments. Memory and Cognition, 20, 483–496.

    Google Scholar 

  • Thorndyke, P.W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–589.

    Article  Google Scholar 

  • Tschander, L.B., Schmidtke, H.R., Eschenbach, C., Habel, C. & Kulik, L. (2002). A geometric agent following route instructions. In C. Freksa, W. Brauer, C. Habel & K. Wender (eds.), Spatial Cognition III. Berlin: Springer.

    Google Scholar 

  • Tversky B. (1993). Cognitive maps, cognitive collages and spatial mental models. In A. Frank & I. Campari (eds.) Spatial information theory: A theoretical basis for GIS. (pp. 14–24). Berlin: Springer.

    Google Scholar 

  • Tversky, B. & Lee, P.U. (1999). Pictorial and verbal tools for conveying routes. In C. Freksa, D.M. Mark (eds.), Spatial information theory. Cognitive and computational foundations of geographic information science. (pp. 51–64). Berlin: Springer

    Chapter  Google Scholar 

  • Wahlster, W.; Blocher, A.; Baus, J.; Stopp, E. & Speiser, H. (1998). Ressourcenadaptive Objektlokalisation: Sprachliche Raumbeschreibung unter Zeitdruck. In Kognitionswissenschaft, 7, 111–117.

    Article  Google Scholar 

  • Wahlster, W.; Baus, J.; Kray, C. & Krüger, A. (2001). REAL: Ein ressourcenadaptierendes mobiles Navigationssystem, Informatik Forschung und Entwicklung, 16, 233–241.

    Article  MATH  Google Scholar 

  • Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 21, 179–217.

    Article  Google Scholar 

  • Zhang, J. & Norman, D. A. (1994). Representation in distributed cognitive tasks. Cognitive Science, 18, 87–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klippel, A., Tappe, H., Habel, C. (2003). Pictorial Representations of Routes: Chunking Route Segments during Comprehension. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds) Spatial Cognition III. Spatial Cognition 2002. Lecture Notes in Computer Science, vol 2685. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45004-1_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45004-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40430-9

  • Online ISBN: 978-3-540-45004-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics