Advertisement

Use of Reference Directions in Spatial Encoding

  • Constanze Vorwerg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)

Abstract

Evidence is presented for the use of reference directions in verbal encoding and memory encoding. It is argued that reference directions (in linguistic spatial categorization as well as in memory encoding) are based on perceptually salient and distinguished orientations. A newly found spatial tilt effect for the sagittal in 3D visual space, that is reflected in different kinds of language processing, confirms a perceptual foundation of spatial language. It is proposed that direction is a qualitative attribute dimension, whose prototype values are not mean values or other characteristics of an empirical distribution but instead perceptually salient cognitive reference values. An account for angular bias effects in reporting location from memory is put forward and experimental results on the angular bias with and without physically present lines are presented.

Keywords

Reference Line Angular Deviation Visual Space Reference Object Reference Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anooshian, L. J. & Siegel, A. W. (1985). From cognitive to procedural mapping. In C. J. Brainerd & M. Pressley (Eds.), Basic processes in memory development: Progress in cognitive development research (pp. 47–101). New York: Springer.Google Scholar
  2. 2.
    Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation. The oblique ‘effect’ in man and animals. Psychological Bulletin, 78, 226–278.CrossRefGoogle Scholar
  3. 3.
    Attneave, F. & Olson, R. K. (1967). Discriminability of stimuli varying in physical and retinal orientation. Journal of Experimental Psychology, 74, 149–157.CrossRefGoogle Scholar
  4. 4.
    Aubert, H. (1861). Eine scheinbare bedeutende Drehung von Objecten bei Neigung des Kopfes nach rechts oder links. Virchows Archiv für pathologische Anatomie und Physiologie, 20, 381–393.CrossRefGoogle Scholar
  5. 5.
    Beh, H., Wenderoth, P., & Purcell, A. (1971). The angular function of a rod-and-frame illusion. Perception & Psychophysics, 9, 353–355.Google Scholar
  6. 6.
    Betts, G. A. & Curthoys, I. S. (1998). Visually perceived vertical and visually perceived horizontal are not orthogonal. Vision Research, 38, 1989–1999.CrossRefGoogle Scholar
  7. 7.
    Bryant, D. J. & Subbiah, I. (1993). Strategic and perceptual factors producing tilt contrast in dot localization. Memory and Cognition, 31, 773–784.Google Scholar
  8. 8.
    Carlson-Radvansky, L. A., Covey, E. S. & Lattanzi, K. M. (1999). ‘What’ effects on ‘where’: Functional influences on spatial relations. Psychological Science, 10, 516–521.CrossRefGoogle Scholar
  9. 9.
    Carlson-Radvansky, L. A. & Radvansky, G. A. (1996). The influence of functional relations on spatial term selection. Psychological Science, 7, 56–60.CrossRefGoogle Scholar
  10. 10.
    Carpenter, R. H. S. & Blakemore, C. (1973). Interactions between orientations in human vision. Experimental Brain Research, 18, 287–303.CrossRefGoogle Scholar
  11. 11.
    Chater, N. & Brown, G. D. A. (1999). Scale-invariance as a unifying psychological principle. Cognition, 69, B17–B24.CrossRefGoogle Scholar
  12. 12.
    Coventry, K. R., Carmichael, R. & Garrod, S. C. (1994). Spatial prepositions, object-specific function, and task requirements. Journal of Semantics, 11, 289–309.CrossRefGoogle Scholar
  13. 13.
    Crawford, L. E., Regier, T. & Huttenlocher, J. (2000). Linguistic and non-linguistic spatial categorization. Cognition, 75, 209–235.CrossRefGoogle Scholar
  14. 14.
    Engebretson, P. H. & Huttenlocher, J. (1996). Bias in spatial location due to categorization: Comment on Tversky and Schiano. Journal of Experimental Psychology: General, 125, 96–108.CrossRefGoogle Scholar
  15. 15.
    Franklin, N., Henkel, L. A. & Zangas, T. (1995). Parsing surrounding space into regions. Memory and Cognition, 23, 397–407.Google Scholar
  16. 16.
    Franklin, N. & Tversky, B. (1990). Searching imagined environments. Journal of Experimental Psychology: General, 119, 63–76.CrossRefGoogle Scholar
  17. 17.
    Galilei, G. (1632). Dialogue concerning the two chief world systems, Ptolemaic and Copernican. Berkeley: University of California (Transl., 1967).Google Scholar
  18. 18.
    Gapp, K. (1995). An empirically validated model for computing spatial relations. In I. Wachsmuth, C. Rollinger & W. Brauer (Eds.), KI-95: Advances in Artificial Intelligence. Proceedings of the 19th Annual German Conference on Artificial Intelligence (pp. 245–256). Berlin: Springer.Google Scholar
  19. 19.
    Gibson, J. J. (1937). Adaptation, after-effect and contrast in the perception of tilted lines: II. Simultaneous contrast and areal restriction of the after-effect. Journal of Experimental Psychology, 20, 553–569.CrossRefGoogle Scholar
  20. 20.
    Goldmeier, E. (1937). Über Ähnlichkeit bei gesehenen Figuren. Psychologische Forschung, 21, 146–209.CrossRefGoogle Scholar
  21. 21.
    Hayward, W. G. & Tarr, M. J. (1995). Spatial language and spatial representation. Cognition 55, 39–84.CrossRefGoogle Scholar
  22. 22.
    Hernandez, D. (1994). Qualitative representation of spatial knowledge. Berlin: Springer.zbMATHGoogle Scholar
  23. 23.
    Herrmann, T. (1990). Vor, hinter, rechts und links: das 6H-Modell. Zeitschrift für Literaturwissenschaft und Linguistik, 78, 117–140.Google Scholar
  24. 24.
    Herrmann, T. & Graf, R. (1991). Ein dualer Rechts-Links-Effekt. Zeitschrift für Psychologie, Suppl. 11, 137–147.Google Scholar
  25. 25.
    Herskovits, A. (1986). Language and spatial cognition: An interdisciplinary study of the prepositions in English. Cambridge: Cambridge University Press.Google Scholar
  26. 26.
    Hintzman, D. L., O’Dell, C. S. & Arndt, D. R. (1981). Orientation in cognitive maps. Cognitive Psychology, 13, 149–206.CrossRefGoogle Scholar
  27. 27.
    Howard, I. P. & Templeton, W. B. (1966). Human spatial orientation. New York: Wiley.Google Scholar
  28. 28.
    Huttenlocher, J., Hedges, L. & Duncan, S. (1991). Categories and particulars: Prototype effects in estimating spatial location. Psychological Review, 98, 352–376.CrossRefGoogle Scholar
  29. 29.
    Huttenlocher, J. & Presson, C. C. (1979). The coding and transformation of spatial information. Cognitive Psychology, 11, 375–394.CrossRefGoogle Scholar
  30. 30.
    Jastrow, J. (1893). On the judgment of angles and positions of lines. The American Journal of Psychology (Reproduction 1966, ed. by G. S. Hall), 5, 214–248.Google Scholar
  31. 31.
    Klatzky, R. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In C. Freksa, C. Habel & K. F. Wender (Eds.), Spatial cognition. An interdisciplinary approach to representing and processing spatial knowledge (pp. 1–17). Berlin: Springer.Google Scholar
  32. 32.
    Landau, B. & Jackendoff, R. (1993). “What” and “where” in spatial language and spatial cognition. Behavioral and Brain Sciences, 16, 217–265.Google Scholar
  33. 33.
    Lashley, K. S. (1938). The mechanism of vision: XV. Preliminary studies of the rats’ capacity for detailed vision. Journal of General Psychology, 18, 123–193.CrossRefGoogle Scholar
  34. 34.
    Lawson, R. & Jolicoeur, P. (1998). The effects of plane rotation on the recognition of brief masked pictures of familiar objects. Memory & Cognition, 26, 791–803.Google Scholar
  35. 35.
    Li, J. (1994). Räumliche Relationen und Objektwissen am Beispiel ‘an’ und ‘bei’. Tübingen: Gunter Narr.Google Scholar
  36. 36.
    Logan, G. D. & Sadler, D. D. (1996). A computational analysis of the apprehension of spatial relations. In P. Bloom, M. A. Peterson, L. Nadel & M. F. Garrett (Eds.), Language and space (pp. 493–529). Cambridge, MA: MIT Press.Google Scholar
  37. 37.
    Loomis, J. M., Da Silva, J. A., Philbeck, J. W. & Fukusima, S. S. (1996). Visual perception of location and distance. Current Directions in Psychological Science, 3, 72–77.CrossRefGoogle Scholar
  38. 38.
    Luyat, M., Ohlmann, T. & Barraud, P.A. (1997). Subjective vertical and postural activity. Acta Psychologica, 95, 181–193.CrossRefGoogle Scholar
  39. 39.
    Mapp, A. P. & Ono, H. (1999). Wondering about the wandering cyclopean eye. Vision Research, 39, 2381–2386.CrossRefGoogle Scholar
  40. 40.
    Marcq, P. (1971). Structure d’un point particulier du systeme des prépositions spatiales en latin classique. La Linguistique. Revue Internationale de Linguistique Générale, 7, 81–92.Google Scholar
  41. 41.
    Massion, J. (1994). Postural control system. Current Opinion in Neurobiology, 4, 877–887.CrossRefGoogle Scholar
  42. 42.
    Matin, L. (1986). Visual localization and eye movements. In K. R. Boff, L. Kaufman & J. P. Thomas (Eds.), Handbook of perception and human performance, Vol. 1: Sensory processes and perception (pp. 20/1–20/45). New York: Wiley.Google Scholar
  43. 43.
    Mittelstaedt, H. (1983). A new solution to the problem of verticality. Naturwissenschaften, 70, 272–281.CrossRefGoogle Scholar
  44. 44.
    Montello, D. R. & Frank, A. U. (1996). Modeling directional knowledge and reasoning in environmental space: Testing qualitative metrics. In J. Portugali (Ed.), The construction of cognitive maps (pp. 321–344). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  45. 45.
    Moore, G. T. (1976). Theory and research on the development of environmental knowing. In G. T. Moore & R. G. Golledge (Eds.), Environmental knowing (pp. 138–164). Stroudsburg, Penn.: Dowden, Hutchinson & Ross.Google Scholar
  46. 46.
    Müller, G. E. (1916). Über das Aubertsche Phänomen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 49, 109–244.Google Scholar
  47. 47.
    Neal, E. (1926). Visual localization of the vertical. The American Journal of Psychology, 37, 287–291.CrossRefGoogle Scholar
  48. 48.
    Ogilvie, J. C. & Taylor, M. M. (1958). Effects of orientation of the visibility of a fine line. Journal of the Optical Society of America, 48, 628–629.Google Scholar
  49. 49.
    Ogilvie, J. C. & Taylor, M. M. (1959). Effect of length on the visibility of a fine line. Journal of the Optical Society of America, 49, 898–900.CrossRefGoogle Scholar
  50. 50.
    Olson, D. R. & Hildyard, A. (1977). The mental representation of oblique orientation. Canadian Journal of Psychology, 31, 3–13.Google Scholar
  51. 51.
    Paillard, J. (1987). Cognitive versus sensorimotor encoding of spatial information. In P. Ellen & C. T. Blanc (Eds.), Cognitive processes and spatial orientation in animal and man (pp. 43–77). Dordrecht: Martinus Nijhoff Publishers.Google Scholar
  52. 52.
    Paillard, J. (1991). Motor and representational framing of space. In Paillard, Jacques (Ed.), Brain and space (pp. 163–182). Oxford: Oxford University Press.Google Scholar
  53. 53.
    Palmer, S. E. (1977). Hierarchical structure in perceptual representation. Cognitive Psychology, 9, 441–474.CrossRefMathSciNetGoogle Scholar
  54. 54.
    Radner, M. & Gibson, J. J. (1935). Orientation in visual perception. The perception of tipcharacter in forms. Psychological Monographs, 46, 48–65.Google Scholar
  55. 55.
    Regier, T. & Carlson, L. A. (2001). Grounding spatial language in perception: An empirical and computational investigation. Journal of Experimental Psychology: General, 130, 273–298.CrossRefGoogle Scholar
  56. 56.
    Rinck, M., Hähnel, A., Bower, G. H. & Glowalla, U. (1997). The metrics of spatial situation models. Journal of Experimental Psychology: Learning, Memory, & Cognition, 23, 622–637.CrossRefGoogle Scholar
  57. 57.
    Rock, I. (1973). Orientation and form. New York: Academic Press.Google Scholar
  58. 58.
    Rosch, E. (1975). Cognitive reference points. Cognitive Psychology, 7, 532–547.CrossRefGoogle Scholar
  59. 59.
    Sadalla, E. K. & Montello, D. R. (1989). Remembering changes in direction. Environment and Behavior, 21, 346–363.CrossRefGoogle Scholar
  60. 60.
    Schiano, D. J. & Tversky, B. (1992). Structure and strategy in encoding simplified graphs. Memory and Cognition, 20, 12–20.Google Scholar
  61. 61.
    Shepard, R. N. (1988). The role of transformations in spatial cognition. In J. Stiles-Davis, M. Kritchevsky & U. Bellugi (Eds.), Spatial cognition. Brain bases and development (pp. 81–110). Hillsdale, N.J.: Lawrence Erlbaum.Google Scholar
  62. 62.
    Smith, S. & Wenderoth, P. (1999). Large repulsion, but not attraction, tilt illusions occur when stimulus parameters selectively favour either transient (M-like) oder sustained (P-like) mechanisms. Vision Research, 39, 4113–4121.CrossRefGoogle Scholar
  63. 63.
    Spidalieri, G. & Sgolastra, R. (1997). Psychophysical properties of the trunk midline. Journal of Neurophysiology, 78, 545–549.Google Scholar
  64. 34.
    Steger, J. A. (1968). The reversal of simultaneous contrast. Psychological Bulletin, 70, 774–781.CrossRefGoogle Scholar
  65. 65.
    Stevens, S. S. (1975). Psychophysics. Introduction to its perceptual, neural, and social prospects. New York: John Wiley & Sons.Google Scholar
  66. 66.
    Taylor, M. M. (1961). Effect of anchoring and distance perception on the reproduction of forms. Perceptual and Motor Skills, 12, 203–230.CrossRefGoogle Scholar
  67. 67.
    Thomas, D. R., Lusky, M. & Morrison, S. (1992). A comparison of generalization functions and frame of reference effects in different training paradigms. Perception & Psychophysics, 51, 529–540.Google Scholar
  68. 68.
    Thorndyke, P. W. (1981). Distance estimations from cognitive maps. Cognitive Psychology, 13, 526–550.CrossRefGoogle Scholar
  69. 69.
    Treisman, A. M. & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95, 15–48.CrossRefGoogle Scholar
  70. 70.
    Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13, 407–433.CrossRefGoogle Scholar
  71. 71.
    Tversky, B. & Schiano, D. (1989). Perceptual and conceptual factors in distortions in memory graphs and maps. Journal of Experimental Psychology: General, 118, 387–398.CrossRefGoogle Scholar
  72. 72.
    Vorwerg, C. (2001a). Raumrelationen in Wahrnehmung und Sprache. Kategorisierungsprozesse bei der Benennung visueller Richtungsrelationen. Wiesbaden: Deutscher Universitätsverlag.Google Scholar
  73. 73.
    Vorwerg, C. (2001b). Objektattribute: Bezugssysteme in Wahrnehmung und Sprache. In L. Sichelschmidt & H. Strohner (Eds.), Sprache, Sinn und Situation (pp. 59–74). Wiesbaden: Deutscher Universitä tsverlag.Google Scholar
  74. 74.
    Vorwerg, C. (2003). Contrast effects in the memory encoding of direction relations. Manuscript in preparation.Google Scholar
  75. 75.
    Vorwerg, C. & Rickheit, G. (1998). Typicality effects in the categorization of spatial relations. In C. Freksa, C. Habel & K. F. Wender (Eds.), Spatial cognition. An interdisciplinary approach to representing and processing spatial knowledge (pp. 203–222). Berlin: Springer.Google Scholar
  76. 76.
    Vorwerg, C. & Rickheit, G. (1999a). Richtungsausdrücke und Heckenbildung beim sprachlichen Lokalisieren von Objekten im visuellen Raum. Linguistische Berichte, 178, 152–204.Google Scholar
  77. 77.
    Vorwerg, C. & Rickheit, G. (1999b). Kognitive Bezugspunkte bei der Kategorisierung von Richtungsrelationen. In G. Rickheit (Ed.), Richtungen im Raum (pp. 129–165). Wiesbaden: Westdeutscher Verlag.Google Scholar
  78. 78.
    Vorwerg, C. & Rickheit, G. (2000). Repräsentation und sprachliche Enkodierung räumlicher Relationen. In C. Habel & C. von Stutterheim (Eds.), Räumliche Konzepte und sprachliche Strukturen (pp. 9–44). Tübingen: Niemeyer.Google Scholar
  79. 79.
    Vorwerg, C., Socher, G., Fuhr, T., Sagerer, G. & Rickheit, G. (1997). Projective relations for 3D space: Computational model, application, and psychological evaluation. Proceedings of AAAI-97. Cambridge, MA: AAAI Press/MIT Press, 159–164.Google Scholar
  80. 80.
    Wenderoth, P. (1983). Identical stimuli are judged differently in the orientation and position domains. Perception & Psychophysics, 33,399–402.Google Scholar
  81. 81.
    Wenderoth, P. (1994). The salience of vertical symmetry. Perception, 23, 221–236.CrossRefGoogle Scholar
  82. 82.
    Wenderoth, P., Johnstone, S. & van der Zwan, J. (1989). Two-dimensional tilt illusions induced by orthogonal plaid patterns: Effects of plaid motion, orientation, spatial separation, and spatial frequency. Perception, 18, 25–38.CrossRefGoogle Scholar
  83. 83.
    Wertheimer, M. (1912). Über das Denken der Naturvölker. Zahlen und Zahlgebilde. Zeitschrift für Psychologie, 60, 321–378.Google Scholar
  84. 84.
    Witkin, H. A. & Asch, S. E. (1948). Studies in space orientation. III. Perception of the upright in the absence of a visual field. Journal of Experimental Psychology, 38, 603–614.CrossRefGoogle Scholar
  85. 85.
    Zimmer, H. D., Speiser, H. R., Baus, J., Blocher, A. & Stopp, E. (1998). The use of locative expressions in dependence of the spatial relation between target and reference object in two-dimensional layouts. In C. Freksa, C. Habel & K. F. Wender (Eds.), Spatial cognition. An interdisciplinary approach to representing and processing spatial knowledge (pp. 223–240). Berlin: Springer.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Constanze Vorwerg
    • 1
  1. 1.Situated Artificial CommunicatorsUniversität BielefeldBielefeldGermany

Personalised recommendations