Advertisement

Context Effects in Memory for Routes

  • Karl F. Wender
  • Daniel Haun
  • Björn Rasch
  • Matthias Blümke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)

Abstract

When people experience a new environment they first develop landmark knowledge and second route knowledge. Route knowledge is thought to be different from survey knowledge which may develop with additional experience. The present paper describes three experiments in which participants learned a route through (1) a real maze, (2) a virtual maze, or (3) our university library. Participants were tested for their spatial knowledge using a cued recall procedure. Testing was done either in context, i.e. along the route, or out of context, i.e. in a separate, neutral room.

Results showed a clear context effect. In addition, the context effect generalized along the route in the real environments. However, no generalization was observed in the virtual version. Application of multinomial models revealed that the structure of the knowledge acquired was more complex than assumed by popular models of route knowledge.

Keywords

Virtual Environment Context Effect Multinomial Model Decision Point Context Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208.CrossRefGoogle Scholar
  2. 2.
    Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in Child Development and Behavior (pp. 9–55). New York: Academic Press.Google Scholar
  3. 3.
    Werner, S., Krieg-Brückner, B., & Herrmann, T. (2000). Modeling navigational knowledge by route graphs. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition II (pp. 295–316). Berlin: Springer.CrossRefGoogle Scholar
  4. 4.
    Montello, D. R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In H. Egenhofer, & R. Golledge (Eds.), Spatial and temporal reasoning in geographic information systems (pp. 143–154). Oxford: Oxford University Press.Google Scholar
  5. 5.
    Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–589.CrossRefGoogle Scholar
  6. 6.
    Hirtle, S. C., & Hudson, J. (1991). Acquisition of spatial knowledge for routes. Journal of Environmental Psychology, 11, 335–345.CrossRefGoogle Scholar
  7. 7.
    Gillner, S., & Mallot, H. A. (1998). Navigation and acquisition of spatial knowledge in a virtual maze. Journal of Cognitive Neuroscience, 10, 445–463.CrossRefGoogle Scholar
  8. 8.
    Chown, E., Kaplan, S., & Kortenkamp, D. (1995). Prototypes, location, and associative networks (PLAN): Towards a unified theory of cognitive mapping. Cognitive Science, 19, 1–51.CrossRefGoogle Scholar
  9. 9.
    Kuipers, B. (1978). Modeling spatial knowledge. Cognitive Science, 2, 129–153.CrossRefGoogle Scholar
  10. 10.
    Fukushima, K., Yamaguchi, Y., & Okada, M. (1997). Neural network model of spatial memory: Association recall of maps. Neural Networks, 10, 971–979.CrossRefGoogle Scholar
  11. 11.
    Bower, G. H. (1981). Mood and memory. American Psychologist, 36, 129–148.CrossRefGoogle Scholar
  12. 12.
    Godden, D. R., & Baddeley, A. D. (1975). Context-dependent memory in two natural environments: On land and underwater. British Journal of Psychology, 66, 325–332.Google Scholar
  13. 13.
    Tulving, E., & Thomson, D. H. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 359–380.CrossRefGoogle Scholar
  14. 14.
    Smith, S. M. (1988). Environmental context-dependent memory. In G. M. Davies, & D. M. Thomson (Eds.), Memory in context: Context in memory (pp. 13–34). New York: Wiley.Google Scholar
  15. 15.
    Smith, S. M. (1994). Theoretical principles of context-dependent memory. In P. Morris & M. Gruneberg (Eds.), Theoretical aspects of memory (Aspects of Memory, 2nd ed., Vol. 2, pp. 168–195). New York: Routledge.Google Scholar
  16. 16.
    Smith, S. M. & Vela, E. (2001). Environmental context-dependent memory: A Review and meta-analysis. Psychonomic Bulletin & Review, 8, 203–220.Google Scholar
  17. 17.
    Cornell, E. H., Herth, C. D.,& Skoczylas, M. J (1999). The nature and use of route expectancies following incidental learning. Journal of Environmental Psychology, 19, 209–229.CrossRefGoogle Scholar
  18. 18.
    Schumacher, S., Wender, K.F., & Rothkegel, R. (2000). Influences of context on memory for routes. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition II (pp. 348–362), Berlin: Springer.CrossRefGoogle Scholar
  19. 19.
    Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin & Review, 6, 57–86.Google Scholar
  20. 20.
    Mecklenbräuker, S., Wippich, W., Wagener, M., & Saathoff, J. E. (1998). Spatial information and actions. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial Cognition (pp. 39–61). Berlin: Springer.CrossRefGoogle Scholar
  21. 21.
    Hu, S., & Batchelder, W. H. (1994). The statistical analysis of general processing tree models with the EM algorithm. Psychometrika, 59, 21–47.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rothkegel, R. (1999). AppleTree: A multinominal processing tree modeling program for Macintosh computers. Behavior Research Methods, Instruments, & Computers, 31, 696–700.Google Scholar
  23. 23.
    Ruddle, R.A., Payne, S.J., & Jones, D.M. (1997). Navigating buildings in “desktop” virtual environments: Experimental investigations using extended navigational experience. Journal of Experimental Psychology: Applied, 3, 143–159.CrossRefGoogle Scholar
  24. 24.
    Christou, C., & Bülthoff H. H. (2000). Using realistic virtual environments in the study of spatial encoding. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition II (pp. 317–332). Berlin: Springer.CrossRefGoogle Scholar
  25. 25.
    Richardson, A. E. Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27, 741–750.Google Scholar
  26. 26.
    Jaeger, A. O., Althoff, K. (1983). Der Wilde-Intelligenz-Test (WIT). Goettingen: Hogrefe.Google Scholar
  27. 27.
    Batschelet, E. (1981). Circular statistics in biology. New York: Academic Press.zbMATHGoogle Scholar
  28. 28.
    Montello, D.R., Richardson, A.E., Hegarty, M., & Provenza, M. (1999). A comparison of methods for estimating directions in egocentric space. Perception, 28, 981–1000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Karl F. Wender
    • 1
  • Daniel Haun
    • 1
  • Björn Rasch
    • 1
  • Matthias Blümke
    • 2
  1. 1.University of TrierTrierGermany
  2. 2.University of HeidelbergHeidelbergGermany

Personalised recommendations