Advertisement

Priming in Spatial Memory: A Flow Model Approach

  • Karin Schweizer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)

Abstract

Theories on spatial priming usually explain the reduction of reaction time (the priming effect) by spreading activation. In the field of spatial cognition concurrent models like post-lexical priming mechanisms or compound cue theories (expectancy-based priming theories) have not been consequently discussed. None of the existing theories, however, provides a sufficient explanation for both kinds of findings, various distance effects and alignment effects in episodic spatial memory. Moreover, all existing theories need a series of additional assumptions and transformations to translate theoretical magnitudes like activation or familiarity into reaction time latencies. the transformation from activation or familiarity to reaction times. This unsatisfying state of the art implies to suggest a new approach to think about spatial priming. The illustrated solution regards priming as a specific solution of the Navier-Stokes equation. Empirical data support the suggested model.

Keywords

Priming Effect Priming Process Spatial Cognition Spatial Layout Priming Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R.H. & Shaw, C.D. (1985). Dynamics — The geometry of behavior (Part 1: Periodic behavior). Santa Cruz, CA: Aerial Press.Google Scholar
  2. Anderson, J.R. (1983). A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior, 22, 261–295.CrossRefGoogle Scholar
  3. Anderson, J.R. (1991). Is human cognition adaptive? Behavioral and Brain Sciences, 14, 471–517.Google Scholar
  4. Beller, H. K. (1971). Priming: effects of advance information on matching. Journal of Experimental Psychology, 87, 176–182.CrossRefGoogle Scholar
  5. Birkhoff, G. (1978). Hydrodynamics. Westport: Greenwood Press.Google Scholar
  6. Chown, E., Kaplan, S. & Kortenkamp, D. (1995). Prototypes, location, and associative networks (PLAN): towards a unified theory of cognitive mapping. Cognitive Science, 19, 1–51.CrossRefGoogle Scholar
  7. Clayton, K. & Habibi, A. (1991). Contribution of temporal contiguity to the spatial priming effect. Journal of Experimental Psychology: Learning, Memory and Cognition, 17, 263–271.CrossRefGoogle Scholar
  8. Collins, A.M. & Loftus, E.F. (1975). A spreading activation theory of semantic processing. Psychological Review, 82, 407–428.CrossRefGoogle Scholar
  9. Curiel, J.M. & Radvansky, G.A. (1998). Mental organization of maps. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 202–214.CrossRefGoogle Scholar
  10. De Groot, A.M.B. (1985). Word-context effects in word naming and lexical decision. The Quarterly Journal of Experimental Psychology, 37A, 281–297.Google Scholar
  11. Downs, R.M. & Stea, D.S. (1973) (eds.). Image and environment. Cognitive mapping and spatial behavior (pp. 8–26). Chicago: Aldine.Google Scholar
  12. Franklin, N., Tversky, B., & Coon, V. (1992). Switching points of view in spatial mental models. Memory & Cognition, 20, 507–518.Google Scholar
  13. Gillund, G. & Shiffrin, R.M. (1984). A retrieval model for both cognition and recall. Psychological Review, 91, 1–67.CrossRefGoogle Scholar
  14. Hardwick, D.A., Woolridge, S.C. & Rinalducci, E.J. (1983). Selection of landmarks as a correlate of cognitive map organization. Psychological Reports, 53, 807–813.Google Scholar
  15. Janzen, G. (2000). Organisation räumlichen Wissens. Untersuchungen zur Orts-und Richtungsreprä sentation. Wiesbaden: DUV.Google Scholar
  16. Janzen, G., Herrmann, T., Katz, S. & Schweizer, K (2000). Oblique angled intersections and barriers: Navigating through a virtual maze. In C. Freksa, W. Brauer, C. Habel & K.F. Wender (eds.) Spatial cognition II — Integrating abstract theories, empirical studies, formal methods, and practical applications (pp. 277–294). Berlin: Springer.Google Scholar
  17. Kitchin, R.M. (1994). Cognitive maps: what are they and why study them? Journal of Environmental Psychology, 14, 1–19.CrossRefGoogle Scholar
  18. Kitchin, R. & Freundschuh, S. (2000). Cognitive mapping: past, present and future. London: Routledge Frontiers of Cognitive Science.Google Scholar
  19. Kuipers, B. (1978). Modelling spatial knowledge. Cognitive Science, 2, 129–153.CrossRefGoogle Scholar
  20. Kuipers, B. (1983). The cognitive map: could it have been any other way? In H.L. Pick & L.P. Acredolo (eds.), Spatial orientation (pp. 345–359). New York, NY: Plenum Press.Google Scholar
  21. Levine, M., Jankovic, I.N. & Palij, M. (1982). Principles of spatial problem solving. Journal of Experimental Psychology: General, 11, 157–175.CrossRefGoogle Scholar
  22. Luce, R.D. (1986). Response times. Their role in inferring elementary mental organization. New York, NY: Oxford University Press.Google Scholar
  23. Lynch, K. (1960). The image of the city. Cambridge, MA: The Technology Press & Harvard University Press.Google Scholar
  24. May, M., Péruch, P. & Savoyant, A. (1995). Navigating in a virtual environment with mapacquired knowledge: encoding and alignment effects. Ecological Psychology, 7, 21–36.CrossRefGoogle Scholar
  25. McClelland, J.L. & Rumelhart, D.E. (1981). An interactive activation model of context effects in letter perception. Part 1: an account of basic findings. Psychological Review, 88, 375–407.CrossRefGoogle Scholar
  26. McKoon, G. & Ratcliff, R. (1992). Spreading activation versus compound cue accounts of priming: mediated priming revisited. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 1155–1171.CrossRefGoogle Scholar
  27. McNamara, T.P. (1986). Mental representations of spatial relations. Cognitive Psychology, 18, 87–121.CrossRefGoogle Scholar
  28. McNamara, T.P. (1991). Memory’s view of space. In G.H. Bower (ed.), The psychology of learning and motivation (pp. 147–186). San Diego: Academic Press.Google Scholar
  29. McNamara, T.P. (1992a). Theories of priming: I. Associative distance and lag. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 1173–1190.CrossRefGoogle Scholar
  30. McNamara, T.P. (1992b). Priming and constraints it places on theories of memory and retrieval. Psychological Review, 99, 650–662.CrossRefGoogle Scholar
  31. McNamara, T.P., Halpin, J.A. & Hardy, J.K. (1992). Spatial and temporal contributions to the structure of spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 555–564.CrossRefGoogle Scholar
  32. McNamara, T.P., Hardy, J.K. & Hirtle, S.S.C. (1989). Subjective hierarchies in spatial memory. Journal of Experimental Psychology: Learning, Memory and Cognition, 15, 211–227.CrossRefGoogle Scholar
  33. McNamara, T.P. & LeSueur, L.L. (1989). Mental representations of spatial and nonspatial relations. The Quarterly Journal of Experimental Psychology, 41 A, 215–233.Google Scholar
  34. McNamara, T.P., Ratcliff, R.& McKoon, G. (1984). The mental representation of knowledge acquired from maps. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 723–732.CrossRefGoogle Scholar
  35. Merrill, A.A. & Baird, J.C. (1987). Semantic and spatial factors in environmental memory. Memory & Cognition, 15, 101–108.Google Scholar
  36. Meyer, D.E. & Schvaneveldt, R.W. (1971). Facilitation in recognizing pairs of words: evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90, 227–234.CrossRefGoogle Scholar
  37. Milne-Thomson, L.M. (1976). Theoretical hydrodynamics (5. ed.). London: The Macmillan Press.Google Scholar
  38. Murdock, B.B. (1982). A theory for the storage and retrieval of item and associative information. Psychological Review, 89, 609–626.CrossRefGoogle Scholar
  39. Neely, J.H. (1991). Semantic priming effects in visual word recognition: a selective review of current findings and theories. In D. Besner & G.W. Humphreys (eds.), Basic processes in reading. Visual word recognition (pp. 264–337). Hillsdale, NJ: Erlbaum.Google Scholar
  40. Neely, J. H. & Keefe, D. E. (1989). Semantic context effects on visual word processing: a hybrid prospective-retrospective processing theory. In G.H. Bower (ed.), The psychology of learning and motivation (Vol. 24, pp. 202–248). New York, NY: Academic Press.Google Scholar
  41. Pick, H.L., Montello, D.R. & Somerville, S.C. (1988): Landmarks and the coordination and integration of spatial information. British Journal of Developmental Psychology, 6, 372–375.Google Scholar
  42. Posner, M.I. & Mitchell, R.F. (1967). Chronometric analysis of classification. Psychological Review, 74, 392–409.CrossRefGoogle Scholar
  43. Presson, C.C., DeLange, N. & Hazelrigg, M.D. (1987). Orientation-specificity in kinaesthetic spatial learning: the role of multiple orientations. Memory & Cognition, 15, 225–229.Google Scholar
  44. Raajjmakers, J.G.W. & Shiffrin, R.M. (1981). Search of associative memory. Psychological Review, 88, 93–134.CrossRefGoogle Scholar
  45. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.CrossRefGoogle Scholar
  46. Ratcliff, R. & McKoon, G. (1981). Does activation really spread? Psychological Review, 88, 454–462.CrossRefGoogle Scholar
  47. Ratcliff, R. & McKoon, G. (1988). A retrieval theory of priming in memory. Psychological Review, 95, 305–408.Google Scholar
  48. Roskos-Ewoldson, B., McNamara, T.P., Shelton, A.L. & Carr, W. (1998). Mental representations of large and small spatial layouts are orientation dependent. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 215–226.CrossRefGoogle Scholar
  49. Schölkopf, B. & Mallot, H.A. (1995). View-based cognitive mapping and path integration. Adaptive Behavior, 3, 311–348.CrossRefGoogle Scholar
  50. Schweizer, K. (1997). Räumliche oder zeitliche Wissensorganisation? Zur mentalen Repräsentation der Blickpunktsequenz bei räumlichen Anordnungen. Lengerich: Pabst Science Publishers.Google Scholar
  51. Schweizer, K. (2001). Strömt die Welt in unseren Köpfen? Kontiguität und Abruf in mentalen Karten. (Unpublised habilitation thesis). Mannheim, University of Mannheim.Google Scholar
  52. Schweizer, K., Herrmann, T., Janzen, G. & Katz, S. (1998). The route direction effect and its constraints. In C. Freska, C. Habel & K.F. Wender (eds.), Spatial cognition. An interdisciplinary approach to representing and processing spatial knowledge (pp. 19–38). Berlin: Springer.Google Scholar
  53. Schweizer, K. & Janzen, G. (1996). Zum Einfluß der Erwerbssituation auf die Raumkognition: Mentale Repräsentation der Blickpunktsequenz bei räumlichen Anordnungen. Sprache & Kognition, 15, 217–233.Google Scholar
  54. Siegel, A.W. & White, S.H. (1975). The development of spatial representations of large-scale environments. In H.R. Reese (ed.), Advances in child development and behaviour (pp. 10–55). New York, NY: Academic Press.Google Scholar
  55. Steck, S. & Mallot, H.A. (2000). The role of global and local landmarks in virtual environment navigation. Presence, 9, 69–83.CrossRefGoogle Scholar
  56. Strohecker, C. (2000). Cognitive zoom: from object to path and back again. In C. Freksa, W. Brauer, C. Habel & K.F. Wender (eds.), Spatial cognition II — Integrating abstract theories, empirical studies, formal methods, and practical applications (pp. 1–15). Berlin: Springer.Google Scholar
  57. Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13, 407–433.CrossRefGoogle Scholar
  58. Wagener, M. & Wender, K.F. (1985). Spatial representations and inference processes in memory for text. In G. Rickheit & H. Strohner (eds.), Inferences in text processing (pp. 115–136). Amsterdam: North-Holland.Google Scholar
  59. Werner, S., Krieg-Brückner, B. & Herrmann, T. (2000). Modelling navigational knowledge by route graphs. In C. Freksa, W. Brauer, C. Habel & K.F. Wender (eds.), Spatial cognition II — Integrating abstract theories, empirical studies, formal methods, and practical applications (pp. 295–316). Berlin: Springer.Google Scholar
  60. Werner, S., Krieg-Brückner, B., Mallot, H.A., Schweizer, K. & Freksa, C. (1997). Spatial cognition: the role of landmark, route, and survey knowledge in human and robot navigation. In M. Jarke, K. Pasedach & K. Pohl (eds.) Informatik’97 (pp. 41–50). Berlin: Springer.Google Scholar
  61. Zierep, J. (1997). Grundzüge der Strömungslehre (6. Aufl.). Berlin: Springer.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Karin Schweizer
    • 1
  1. 1.University of WuppertalWuppertalGermany

Personalised recommendations