Advertisement

Ramsete pp 181-226 | Cite as

Control of Wheeled Mobile Robots: An Experimental Overview

  • Alessandro De Luca
  • Giuseppe Oriolo
  • Marilena Vendittelli
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 270)

Abstract

The subject of this chapter is the motion control problem of wheeled mobile robots (WMRs). With reference to the unicycle kinematics, we review and compare several control strategies for trajectory tracking and posture stabilization in an environment free of obstacles. Experiments are reported for SuperMARIO, a two-wheel differentially-driven mobile robot. From the comparison of the obtained results, guidelines are provided for WMR end-users.

Keywords

Mobile Robot Posture Stabilisation Trajectory Tracking Nonholonomic System Chained Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aicardi M, Casalino G, Bicchi A, Balestrino A 1995 Closed loop steering of unicycle-like vehicles via Lyapunov techniques. IEEE Robotics and Automation Magazine 2(1):27–35CrossRefGoogle Scholar
  2. 2.
    Alexander J C, Maddocks J H 1989 On the kinematics of wheeled mobile robots. International Journal of Robotics Research 8(5):15–27CrossRefGoogle Scholar
  3. 3.
    Astolfi A 1996 Discontinuous control of nonholonomic systems. Systems and Control Letters 27:37–45zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bennani M K, Rouchon P 1995 Robust stabilization of flat and chained systems. In: Proceedings of 3rd European Control Conference Rome, I, pp 2642–2646Google Scholar
  5. 5.
    Bloch A M, Reyhanoglu M, McClamroch N H 1992 Control and stabilization of nonholonomic dynamic systems. IEEE Transactions on Automatic Control 37:1746–1757zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brockett R W 1983 Asymptotic stability and feedback stabilization. In: Brockett R W, Millman R S, Sussmann H J (Eds) Differential Geometric Control Theory Birkhäuser, Boston, MA, pp 181–191Google Scholar
  7. 7.
    Campion G, Bastin G, d’Andrfféa-Novel B 1996 Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation 12:47–62CrossRefGoogle Scholar
  8. 8.
    Campion G, d’Andréa-Novel B, Bastin G 1991 Modeling and state feedback control of nonholonomic mechanical systems. In: Proceedings of 30th IEEE Conference on Decision and Control Brighton, UK, pp 1184–1189Google Scholar
  9. 9.
    Canudas de Wit C, Khennouf H, Samson C, Sørdalen O J 1993 Nonlinear control design for mobile robots. In: Zheng Y F (Ed) Recent Trends in Mobile Robots World Scientific Publisher, pp 121–156Google Scholar
  10. 10.
    Canudas de Wit C, Sørdalen O J 1992 Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Transactions on Automatic Control 37:1791–1797zbMATHCrossRefGoogle Scholar
  11. 11.
    d’Andréa-Novel B, Bastin G, Campion G 1995 Control of nonholonomic wheeled mobile robots by state feedback linearization. International Journal of Robotics Research 14:543–559CrossRefGoogle Scholar
  12. 12.
    De Luca A, Di Benedetto M D 1993 Control of nonholonomic systems via dynamic compensation. Kybernetica 29:593–608zbMATHGoogle Scholar
  13. 13.
    De Luca A, Oriolo G, Samson C 1998 Feedback control of a nonholonomic carlike robot. In: Laumond J P (Ed) Robot Motion Planning and Control Springer, London, UK, pp 171–253CrossRefGoogle Scholar
  14. 14.
    De Luca A, Oriolo G, Vendittelli M 2000 Stabilization of the unicycle via dynamic feedback linearization. In: Preprints of 6th IFAC Symposium on Robot Control Vienna, A, pp 397–402Google Scholar
  15. 15.
    Fliess M, Lévine J, Martin P, Rouchon P 1995 Design of trajectory stabilizing feedback for driftless flat systems. In: Proceedings of 3rd European Control Conference Rome, I, pp 1882–1887Google Scholar
  16. 16.
    Isidori A 1995 Nonlinear Control Systems (3rd ed) Springer, London, UKzbMATHGoogle Scholar
  17. 17.
    Jiang Z-P, Nijmeijer H 1999 A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Transactions on Automatic Control 44:265–279zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Jones J L, Flynn A M 1993 Mobile Robots: Inspiration to Implementation A K Peters, Wellesley, MAzbMATHGoogle Scholar
  19. 19.
    Lucibello P, Oriolo G 2001 Robust stabilization via iterative state steering with an application to chained-form systems. Automatica 37:71–79zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ma Y, Kočeckà J, Sastry S 1999 Vision guided navigation for a nonholonomic mobile robot. IEEE Transactions on Robotics and Automation 15:521–536CrossRefGoogle Scholar
  21. 21.
    M’Closkey R T, Murray R M 1997 Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Transactions on Automatic Control 42:614–628CrossRefMathSciNetGoogle Scholar
  22. 22.
    Morin P, Samson C 1997 Application of backstepping techniques to time-varying exponential stabilisation of chained systems. European Journal of Control 3:15–36zbMATHGoogle Scholar
  23. 23.
    Murray R M 1993 Control of nonholonomic systems using chained forms. Fields Institute Communications 1:219–245Google Scholar
  24. 24.
    Neimark J I, Fufaev F A 1972 Dynamics of Nonholonomic Systems American Mathematical Society, Providence, RIzbMATHGoogle Scholar
  25. 25.
    Oriolo G, Panzieri S, Ulivi G 1998 An iterative learning controller for nonholonomic robots. International Journal of Robotics Research 17:954–970CrossRefGoogle Scholar
  26. 26.
    Samson C 1993 Time-varying feedback stabilization of car-like wheeled mobile robots. International Journal of Robotics Research 12:55–64CrossRefGoogle Scholar
  27. 27.
    Samson C 1995 Control of chained systems. Application to path following and time-varying point-stabilization of mobile robots. IEEE Transactions on Automatic Control 40:64–77zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Samson C, Ait-Abderrahim K 1991 Feedback control of a nonholonomic wheeled cart in cartesian space. In: Proceedings of 1991 IEEE International Conference on Robotics and Automation Sacramento, CA, pp 1136–1141Google Scholar
  29. 29.
    Schraft R D, Schmierer G 1998 Serviceroboter Springer, Berlin, DGoogle Scholar
  30. 30.
    Sepulchre R, Janković M, Kokotović P 1997 Constructive Nonlinear Control Springer, London, UKzbMATHGoogle Scholar
  31. 31.
    Sontag E D 1990 Feedback stabilization of nonlinear systems. In: Kaashoek M A, van Schuppen J H, Ran A C M (Eds) Robust Control of Linear Systems and Nonlinear Control Birkhäuser, Cambridge, MA, pp 61–81Google Scholar
  32. 32.
    Sørdalen O J, Egeland O 1995 Exponential stabilization of nonholonomic chained systems. IEEE Transactions on Automatic Control 40:35–49zbMATHCrossRefGoogle Scholar
  33. 33.
    Vendittelli M, Oriolo G 2000 Stabilization of the general two-trailer system. In: Proceedings of 2000 IEEE International Conference on Robotics and Automation San Francisco, CA, pp 1817–1823Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alessandro De Luca
    • 1
  • Giuseppe Oriolo
    • 1
  • Marilena Vendittelli
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversità degli Studi di Roma “La Sapienza”RomaItaly

Personalised recommendations