Skip to main content

Mappings for Conflict-Free Access of Paths in Elementary Data Structures

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1858))

Included in the following conference series:

Abstract

Since the divergence between the processor speed and the memory access rate is progressively increasing, an efficient partition of the main memory into multibanks is useful to improve the overall system performance. The effectiveness of the multibank partition can be degraded by memory conflicts, that occur when there are many references to the same memory bank while accessing the same memory pattern. Therefore, mapping schemes are needed to distribute data in such a way that data can be retrieved via regular patterns without conflicts. In this paper, the problem of conflict-free access of arbitrary paths in bidimensional arrays, circular lists and complete trees is considered for the first time and reduced to variants of graph-coloring problems. Balanced and fast mappings are proposed which require an optimal number of colors (i.e., memory banks). The solution for bidimensional arrays is based on a combinatorial object similar to a Latin Square. The functions that map an array node or a circular list node to a memory bank can be calculated in constant time. As for complete trees, the mapping of a tree node to a memory bank takes time that grows logarithmically with the number of nodes of the tree.

This work has been supported by the ”Provincia Autonoma di Trento” under a research grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Auletta, S. K. Das, M. C. Pinotti, and V. Scarano, “Toward a Universal Mapping Algorithm for Accessing Trees in Parallel Memory Systems”, Proceedings of IEEE Int’l Parallel Processing Symposium, Orlando, pp. 447–454, Apr. 1998.

    Google Scholar 

  2. V. Auletta, A. De Vivo, V. Scarano, “Multiple Template Access of Trees in Parallel Memory Systems”. Journal of Parallel and Distributed Computing, Vol. 49, 1998, pp. 22–39.

    Article  MATH  Google Scholar 

  3. G.E. Blelloch, P.B. Gibbons, Y. Mattias and M. Zagha, “Accounting for Memory Bank Contention and Delay in High-Bandwidth Multiprocessors”, IEEE Trans. on Parallel and Distrib. Systems, Vol. 8, 1997, pp. 943–958.

    Article  Google Scholar 

  4. S. K. Das and F. Sarkar, “Conflict-Free Data Access of Arrays and Trees in Parallel Memory Systems”, Proc. of the Sixth IEEE Symposium on Parallel and Distributed Processing, Dallas, TX, Oct. 1994, pp. 377–384.

    Google Scholar 

  5. S. K. Das, F. Sarkar and M. C. Pinotti, “Parallel Priority Queues in Distributed Memory Hypercubes”, IEEE Transactions on Parallel and Distributed Systems, Vol. 7, 1996, pp. 555–564.

    Article  Google Scholar 

  6. S.K. Das and M.C. Pinotti, “Load Balanced Mapping of Data Structures in Parallel Memory Modules for Fast and Conflict-Free Templates Access” Proc. 5th Int. Workshop on Algorithms and Data Structures (WADS’97) Halifax NS, Aug. 1997, LNCS 1272, (Eds. Dehne, Rau-Chaplin, Sack, Tamassia), pp. 272–281.

    Google Scholar 

  7. K. Kim, V.K. Prasanna, “Latin Squares for Parallel Array Access”, IEEE Transactions on Parallel and Distributed Systems, Vol. 4, 1993, pp. 361–370.

    Article  Google Scholar 

  8. S.T. McCormick, “Optimal Approximation of Sparse Hessians and its Equivalence to a Graph Coloring Problem”, Mathematical Programming, Vol. 26, 1983, pp. 153–171.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. C. Pinotti, S. K. Das, and F. Sarkar, “Conflict-Free Template Access in k-ary and Binomial Trees”, Proceedings of ACM-Int’l Conference on Supercomputing, Wein, Austria, pp. 237–244, July 7–11, 1997.

    Google Scholar 

  10. H.D. Shapiro, “Theoretical Limitations on the Efficient Use of Parallel Memories”, IEEE Trans. on Computers, Vol. 27, 1978, pp. 421–428.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertossi, A.A., Pinotti, M.C. (2000). Mappings for Conflict-Free Access of Paths in Elementary Data Structures. In: Du, DZ., Eades, P., Estivill-Castro, V., Lin, X., Sharma, A. (eds) Computing and Combinatorics. COCOON 2000. Lecture Notes in Computer Science, vol 1858. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44968-X_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-44968-X_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67787-1

  • Online ISBN: 978-3-540-44968-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics