A View of the History of Biochemical Engineering

  • Raphael Katzen
  • George T. Tsao
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 70)


The authors present a view of biochemical engineering by describing their personal interests and experience over the years involving mostly conversion of lignocellulosics into fuels and chemicals and the associated engineering subjects.


Biomass conversion Biochemical engineering Fuels Chemicals History 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barthelomew WH, Karow EO, Sfat MR, Wilhelm RH (1950) Ind Eng Chem 42:1801CrossRefGoogle Scholar
  2. Bartisch CM (1979) Ethanol by Homologation of Methanol, US Patent 4, 171, 461Google Scholar
  3. Bergius F (1933) Trans Inst Chem Eng (London) 11:162Google Scholar
  4. Bird RE, Stewart WE, Lightfoot EN (1960) Transport Phenomena. Wiley, NYGoogle Scholar
  5. Bruce LJ, Daugulis AJ (1992) Extractive Fermentation by Zymomonas mobilis and the Use of Solvent Mixtures, Biotechnol Lett 14:71CrossRefGoogle Scholar
  6. Cantarella M et al. (1991) Enzymatic Hydrolysis of Biomass, International Symposium for Alcohol Fuels Proceedings 1:149–154Google Scholar
  7. Chang HN, Furusaki S (1991) Membrane Reactors. Adv Biochem Eng/Biotechnol 44:29Google Scholar
  8. Cen P et al. (1993) Recent Advances in the Simultaneous Bioreactions and Product Separation Processes, Separation Technol 3:1–18Google Scholar
  9. Cooper CM, Fernstrom GA, Miller SA (1944) Ind Eng Chem 36:504CrossRefGoogle Scholar
  10. Cuzens J et al. (1997) Innovative Method for Separating Cellulose Hydrolysis Products, present at the 19th Symposium on Biotechnology for Fuels and Chemicals, Colorado Springs, USAGoogle Scholar
  11. Dale MC, Okos MR, Wankat PC (1985) An Immobilized Cell Reactor with Simultaneous Product Separation, Biotechnol Bioeng 27:932CrossRefGoogle Scholar
  12. Danckwerts PV (1970) Gas-Liquid Reactions, McGraw-Hill, NYGoogle Scholar
  13. Delgenes JP et al. (1991) C5 Sugars to Ethanol by Pichia stipitis, 9th International Symposium for Alcohol Fuels Proceedings, Vol. 1:190–194Google Scholar
  14. Du J et al. (1998) Production of L-Lactic Acid by Rhizopus oryzae in a Bubble Column Fermenter, Appl Biochem Biotechnol 70–72, 323–329Google Scholar
  15. Emert GH (1980) US Patent 4, 220, 721, Method for Enzyme ReutilizationGoogle Scholar
  16. Emert GH et al. (1980) Economic Update of the Gulf Cellulose Alcohol Process, Chem Eng Progress Sept 47–52Google Scholar
  17. Farina GE et al. (1991) Ethanol from Refuse-Derived Fuel, 9th International Symposium for Alcohol Fuels Vol. 1:277–281Google Scholar
  18. Finn RK (1954) Bacterial Review 18:254Google Scholar
  19. Gauss WF et al. (1976) US Patent 3, 990, 9444, Manufacture of Alcohol from Cellulosic Materials Using Plural FermentsGoogle Scholar
  20. Gilbert N et al. (1952) Hydrolysis of Wood, Ind Eng Chem 44:1712–1720CrossRefGoogle Scholar
  21. Gong CS et al. (1999) Co-Production of Ethanol and Glycerol, presented at the 21st Symposium on Biotechnology for Fuels and Chmicals, Fort Collins, COGoogle Scholar
  22. Gong CS et al. (1981) Production of Ethanol from D-Xylose by Using D-Xylose Isomerase and Yeasts, Appl Env Microbiol 41:430–436Google Scholar
  23. Gong CS, Ladisch MR, Tsao GT (1979) Biosynthesis, Purification and Mode of Action of Cellulases of Trichoderma reesei, Adv Chem Ser No. 181:261–287, American Chemical Society, Washington, DCGoogle Scholar
  24. Harris EE et al. (1946) Madison Wood Sugar Process, Ind Eng Chem 38:896–904CrossRefGoogle Scholar
  25. Hixon AW, Gaden EL Jr (1950) Ind Eng Chem 42:1792CrossRefGoogle Scholar
  26. Ho NWY et al. (1997) Development of a Recombinant Xylose-Fermenting Enhanced Saccharomyces, presented at the 19th Symposium on Biotechnology for Fuels and Chemicals, Colorado SpringsGoogle Scholar
  27. Holtzapple MT et al. (1991) The Ammonia Freeze Explosion (AFEX) Process, Appl Biochem Biotechnol 28–29:59–74CrossRefGoogle Scholar
  28. Huff GF et al. (1976) US Patent 3, 990, 945, Enzymatic Hydrolysis of CelluloseGoogle Scholar
  29. Ingram LO et al. (1991) US Patent, 5, 000, 000 Ethanol Production by Escherichia coli Strains Co-Expressing Zymomonas PDC and ADH GenesGoogle Scholar
  30. Katzen R (1990) Ethanol from Lignocellulose Agro-Industrial Revolution Conference, Washington, DCGoogle Scholar
  31. Katzen R (1991) Advancing Technology for Ethanol, 9th International Symposium for Alcohol Fuels Vol. 1:131–136Google Scholar
  32. Katzen R, Othmer DF (1942) Wood Hydrolysis-A Continuous Process, Ind Eng Chem 34:314CrossRefGoogle Scholar
  33. Ladisch MR (1979) Fermentable Sugars from Cellulose Residue, Process Biochem 21–24Google Scholar
  34. Ladisch MR et al. (1984) Cornmeal Adsorber for Dehydrating Ethanol Vapors, Ind Eng Chem Process Res Dev 23:437–443CrossRefGoogle Scholar
  35. Lawford HG et al. (1998) Continuous Culture Studies of Xylose-Fermenting Zymomonas mobilis Appl Biochem Biotechnol 70–72:353–367CrossRefGoogle Scholar
  36. Lievenspiel O (1962) Chemical Reaction Engineering, Wiley, New YorkGoogle Scholar
  37. Locke EC et al. (1945) Production of Wood Sugar in Germany, FIAT Final Report, Office of Military Government for Germany, Washington, DCGoogle Scholar
  38. Mandels M (1974) Enzymatic hydrolysis of waste cellulose. Biotechnol Bioeng Proceedings 16:1471–1493CrossRefGoogle Scholar
  39. Mandels M (1975) Microbial Source of Cellulase, Biotechnol Bioeng Symp No. 5:81Google Scholar
  40. Matsumura M, Mark H (1986) Elimination of Ethanol Inhibition by Pervaporation, Biotechnol Bioeng 28:535CrossRefGoogle Scholar
  41. McCabe BJ, Eckenfelder WW Jr. (1955) Biological Treatment of Sewage and Industrial Wastes Reinhold, NYGoogle Scholar
  42. Montenecourt B, Eveleigh D (1978) Proc Second Fuels from Biomass Symp, Rensselaer Polytechnic Institute, Troy, NY, 613–625Google Scholar
  43. Montenecourt B, Eveleigh D (1977) Appl Environ Microbiol 34:777, 782Google Scholar
  44. Mori, Y, Inaba T (1990) Biotechnol Bioeng 36:849CrossRefGoogle Scholar
  45. Mukerjee A, Lee YY, Tsao GT (1972) Gas-Liquid-Cell Oxygen Absorption in Fermentation, Fermentation Technology Today, Proceedings of the 4th International Fermentation Symposium, Kyoto, Japan, 65Google Scholar
  46. Paiva TCB et al. (1996) Appl Biochem Biotechnol 535:57–58Google Scholar
  47. Reese ET (1975) Biotechnol Bioeng Symp No. 5:71Google Scholar
  48. Reese ET (1976) History of Cellulase Program at Natick, Biotechnol Bioeng Symp 6:9–30Google Scholar
  49. Saddle J (1997) Steam Explosion of Softwood, presented at the 19th Symposium on Biotechnology for Fuels and Chemicals, Colorado SpringsGoogle Scholar
  50. Saeman J (1945) Ind Eng Chem 37:43CrossRefGoogle Scholar
  51. Schell D et al. (1998) Appl Biochem Biotechnol 17:70–72Google Scholar
  52. Scholler H (1935) French Patent 777, 824Google Scholar
  53. Shoemaker SP et al. (1981) Trends in Biology of Fermentation, Plenum Press, pp 89–109Google Scholar
  54. Shuler ML, Kargi F (1992) Bioprocess Engineering Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  55. TAPPI (1988) Test Method T-222 om 88Google Scholar
  56. Tsao GT (1968) Simultaneous Gas-Liquid Interfacial Oxygen Absorption and Biochemical Oxidation Biotechnol Bioeng 10:766Google Scholar
  57. Tsao GT (1978) Cellulosic Materials as Renewable Resource, Process Biochem 13:12–14Google Scholar
  58. Tsao GT, Gong CS, Cao NJ (1999) Repeated Solid Fermentation and Extraction for Enzyme Production, presented at the 21st Symposium on Biotechnology for Fuels and Chemicals, Fort Collins, Colorado, USAGoogle Scholar
  59. Tsao GT, Ladisch MR, Voloch M, Bienkowski P (1982) Production of Ethanol and Chemicals from Cellulosic materials, Process Biochem 17:34–38Google Scholar
  60. Underkofler LA, Hickey RJ (1954) Industrial Fermentation, vols 1 and 2. Chemical Publishing Commpany, NYGoogle Scholar
  61. Whitworth DA et al. (1980) Ethanol from Wood, New Zealand Forest Services ReportGoogle Scholar
  62. Wilke CR (1975) editor, Cellulose as A Chemical and Energy Resource, Biotechnol Bioeng Symp No. 5, Wiley, NYGoogle Scholar
  63. Wilkinson RA (1996) Zymomonas for Ethanol Production, 11th International Symposium for Alcohol Fuels, Proceedings Vol. 2:379–395Google Scholar
  64. Wu Z, Lee YY (1998) Nonisothermal SSF for Direct Conversion of Lignocellulosics into Ethanol, Appl Biochem Biotechnol 479:70–72Google Scholar
  65. Wyman CE et al (1992) Ethanol and Methanol from Cellulosic Biomass, U N Solar Energy Group (SEGED)-Brazil, Proceedings, 865–923Google Scholar
  66. Yange X, Tsai GJ, Tsao GT (1994) Enhancement of in situ Adsorption on Acetone-Butanol Fermentation by Clostridium acetobutylicum, Separation Technol 4:1–12Google Scholar
  67. Yang X, Tsao GT (1995) Enhanced Acetone-butanol Fermentation Using Repeated Fed-Batch Operation Coupled with Cell Recycle by Membranes and Simultaneous Removal of Inhibitory Products by Adsorption, Biotechnol Bioeng 47:444–450CrossRefGoogle Scholar
  68. Yang X, Tsao GT (1994) Mathematical Modeling of Inhibition Kinetics in Acetone-Butanol Fermentation by Clostridium acetobutylicum, Biotechnol Progress 10:532–538CrossRefGoogle Scholar
  69. Zhang MQ et al. (1992) In-situ Separation of Ethanol Fermentation by CO2 Stripping and Activated Carbon Adsorption Process, J Chem Ind Eng 7:19Google Scholar
  70. Zheng Y et al. (1996) Avicel Hydrolysis by Cellulase Enzymes in High pressure Carbon Dioxide, Biotechnol Lett 18:451–454CrossRefGoogle Scholar
  71. Zheng Y et al. (1995) High Pressure Carbon Dioxide Explosion as a Pretreatment for Cellulose Hydrolysis, Biotechnol Lett 17:845–850CrossRefGoogle Scholar
  72. Zheng Y et al. (1996) Lactic Acid Fermentation and Adsorption on PVP, Appl Biochem Biotechnol 57–58, 627–632CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Raphael Katzen
    • 1
  • George T. Tsao
    • 2
  1. 1.Bonita SpringsUSA
  2. 2.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations