Model Checking for Timed Logic Processes

  • Supratik Mukhopadhyay
  • Andreas Podelski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1861)


We apply techniques from logic programming and constraint databases to verify real time systems. We introduce timed logic processes (TLPs) as a fragment of constraint query languages over reals. We establish a formal connection between TLPs and timed automata, and between the procedure of the UPPAAL model checker for restricted temporal-logic properties of timed automata and the top-down query evaluation of TLPs (with tabling in the XSB style). This connection yields an alternative implementation of the UPPAAL procedure. Furthermore, we can extend that procedure in order to accommodate more expressive properties.


Model Check Logic Program Logic Programming Formal Connection Atomic Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AD94.
    R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–236, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  2. AH97.
    R. Alur and T. A. Henzinger. Modularity for timed and hybrid systems. In A. Mazurkiewicz and J. Winkowski, editors, CONCUR’97: Concurrency Theory, volume 1243 of LNCS, pages 74–88. Springer-Verlag, 1997.Google Scholar
  3. BBC96.
    N. Bjorner, A. Browne, E. Chang, M. Colon, A. Kapur, Z. Manna, H. Sipma, and T. Uribe. Step: Deductive-algorithmic verification of reactive and real-time systems. In R. Alur and T. A. Henzinger, editors, CAV’96: Computer Aided Verification, volume 1102 of LNCS, pages 415–418. Springer-Verlag, 1996.Google Scholar
  4. BLL96.
    Johan Bengtsson, Kim. G. Larsen, Fredrik Larsson, Paul Petersson, and Wang Yi. Uppaal in 1995. In T. Margaria and B. Steffen, editors, TACAS, LNCS 1055, pages 431–434. Springer-Verlag, 1996.Google Scholar
  5. BS91.
    A. Brodsky and Y. Sagiv. Inference of inequality constraints in logic programs. In PODS: Principles of Database Systems, pages 227–240. ACM Press, 1991.Google Scholar
  6. CDD98.
    B. Cui, Y. Dong, X. Du, K. N. Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan, A. Roychoudhury, S. A. Smolka, and D. S. Warren. Logic programming and model checking. In PLAP/ALP98, volume 1490 of LNCS, pages 1–20. Springer-Verlag, 1998.Google Scholar
  7. CW96.
    W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs. JACM, 43(1):20–74, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  8. DRS99.
    Xiaoqun Du, C. R. Ramakrishnan, and Scott. A. Smolka. Tabled resolution + constraints: A recipe for model checking real-time systems, 1999. Submitted.Google Scholar
  9. DT98.
    C. Daws and S. Tripakis. Model checking of real-time reachability properties using abstractions. In Bernhard Steffen, editor, TACAS98: Tools and Algorithms for the Construction of Systems, LNCS 1384, pages 313–329. Springer-Verlag, March/April 1998.CrossRefGoogle Scholar
  10. DW99.
    M. Dickhöfer and T. Wilke. Timed alternating tree automata: The automata-theoretic solution to the tctl model checking problem. In J. Widermann, P. van Emde Boas, and M. Nielsen, editors, ICALP: Automata, Languages and Programming, volume 1644 of LNCS, pages 281–290. Springer-Verlag, 1999.CrossRefGoogle Scholar
  11. FP93.
    Laurent Fribourg and Marcos Veloso Peixoto. Concurrent constraint automata. Technical Report LIENS 93-10, ENS Paris, 1993.Google Scholar
  12. FR96.
    L. Fribourg and J. Richardson. Symbolic verification with gap-order constraints. In J. P. Gallagher, editor, LOPSTR’96: Logic Based Program Synthesis and Transformation, volume 1207 of LNCS, pages 20–37. Springer-Verlag, 1996.Google Scholar
  13. Fri98.
    Laurent Fribourg. A closed-form evaluation for extended timed automata. Technical report, ENS Cachan, 1998.Google Scholar
  14. GGV99.
    G. Gottlob, E. Grädel, and H. Veith. Datalog lite: A deductive approach to verification. Technical report, Technische Universität Wien, 1999.Google Scholar
  15. GP97.
    G. Gupta and E. Pontelli. A constraint-based approach for the specification and verification of real-time systems. In Kwei-Jay Lin, editor, IEEE Real-Time Systems Symposium, pages 230–239. IEEE Press, 1997.Google Scholar
  16. GP99.
    Gopal Gupta and Enrico Pontelli. A horn logic denotational framework for specification, implementation, and verification of domain specific languages, March 1999.Google Scholar
  17. Gup99.
    Gopal Gupta. Horn logic denotations and their applications. In The Logic Programming Paradigm: A 25 year perspective. Springer-Verlag, 1999.Google Scholar
  18. HWT95.
    Pei-Hsin Ho and Howard Wong-Toi. Automated analysis of an audio control protocol. In P. Wolper, editor, the Seventh Conference on Computer-Aided Verification, pages 381–394, Liege, Belgium, 1995. Springer-Verlag. LNCS 939.Google Scholar
  19. JM94.
    J. Jaffar and M. J. Maher. Constraint logic programming: A survey. The Journal of Logic Programming, 19/20:503–582, May–July 1994.Google Scholar
  20. JMSY92.
    J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The clp(r) language and system. ACM Transactions on Programming Languages and Systems, 14(3):339–395, 1992.CrossRefGoogle Scholar
  21. KKR95.
    P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. Journal of Computer and System Sciences, 51:26–52, 1995. (Preliminary version in Proc. 9th ACM PODS, 299–313, 1990.).CrossRefMathSciNetGoogle Scholar
  22. LPY95.
    K. G. Larsen, P. Peterson, and W. Yi. Model-checking for real-time systems. In Horst Reichel, editor, Fundamentals of Computation Theory, volume 965 of LNCS, pages 62–88. Springer-Verlag, 1995.Google Scholar
  23. Mil89.
    Robin Milner. Communication and Concurrency. Prentice Hall, 1989.Google Scholar
  24. MP99.
    Supratik Mukhopadhyay and Andreas Podelski. Model checking for timed logic processes, 1999. Available at
  25. Rev90.
    Peter Revesz. A closed form for datalog queries with integer order. In S. Abiteboul and P. C’. Kanellakis, editors, ICDT: the International Conference on Database Theory, volume 470 of LNCS, pages 187–201. Springer-Verlag, 1990.Google Scholar
  26. RKR.
    A. Roychoudhury, K. N. Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A. Smolka. Verification of parameterized systems using logic program transformations. In TACAS’00: Tools and Algorithms for the Construction and Analysis of Systems, volume 1785 of LNCS, pages 172–187. Springer, 2000.CrossRefGoogle Scholar
  27. RRR97.
    Y. S. Ramakrishna, C. R. Ramakrishnan, I. V Ramakrishnan, S. A. Smolka, T. W. Swift, and D. S. Warren. Efficient model checking using tabled resolution. In O. Grumberg, editor, the 9th International Conference on Computer-Aided-Verification, pages 143–154. Springer-Verlag, July 1997.Google Scholar
  28. SS95.
    Oleg Sokolsky and Scott. A. Smolka. Local model checking for real-time systems. In Pierre Wolper, editor, 7th International Conference on Computer-Aided Verification, volume 939 of LNCS, pages 211–224. Springer-Verlag, July 1995.Google Scholar
  29. TS86.
    Hisao Tamaki and Taisuke Sato. Old resolution with tabulation. In International Conference on Logic Programming, LNCS, pages 84–98. Springer-Verlag, 1986.Google Scholar
  30. Urb96.
    L. Urbina. Analysis of hybrid systems in clp(r). In Principles and Practice of Constraint Programming, CP96, Lectures Notes in Computer Science1118, pages 451–467. Springer-Verlag, 1996.Google Scholar
  31. Vie87.
    L. Vielle. A database-complete proof procedure based on sld-resolution. In Fourth International Conference on Logic Programming. MIT Press, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Supratik Mukhopadhyay
    • 1
  • Andreas Podelski
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations