G. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2 (G.-C. Rota ed.), Addison-Wesley, Reading, Mass., 1976 (reissued by Cambridge Univ. Press, London and New York, 1985).
Google Scholar
___, On a conjecture of Peter Borwein, J. Symbolic Computation 20 (1995), 487–501.
MATH
CrossRef
Google Scholar
___, On the proofs of the Rogers-Ramanujan identities, in ‘q-Series and Partitions’, IMA Vol. Math. 18, Springer, New York, 1989, pp. 1–14.
Google Scholar
G. Andrews, R. Baxter, D. Bressoud, W. Burge, P. Forrester, G. Viennot, Partitions with prescribed hook differences, Eur. J. Comb. 8 (1987), 341–350.
MATH
MathSciNet
Google Scholar
D. Bressoud, The Borwein conjecture and partitions with prescribed hook differences, Elec. J. Comb. 3 (1996), 14 pp.
MathSciNet
Google Scholar
___, Proofs and confirmations. The story of the alternating sign matrix conjecture, Cambridge University Press, Cambridge, 1999.
Google Scholar
T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
MATH
Google Scholar
P. Flajolet, Combinatorial aspects of continued fractions, Disc.Math. 32 (1980), 125–161.
MATH
MathSciNet
Google Scholar
D. Foata, A combinatorial proof of the Mehler formula, J. Comb. A 24 (1978), 367–376.
MATH
CrossRef
MathSciNet
Google Scholar
D. Foata and P. Leroux, Polynômes de Jacobi, interpretation combinatoire et fonction génératrice, Proc. Amer. Math. Soc. 87 (1983), 47–53.
Google Scholar
D. Foata and V. Strehl, Combinatorics of Laguerre polynomials, in ‘Enumeration and Design’, Academic Press, Toronto, 1984, pp. 123–140.
Google Scholar
A. Garsia and S. Milne, Method for constructing bijections for classical partition identities, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 2026–2028.
Google Scholar
F. Garvan, D. Kim, and D. Stanton, Cranks and t-cores, Inv.Math. 101 (1990), 1–17.
MATH
CrossRef
MathSciNet
Google Scholar
G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
MATH
Google Scholar
I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math. 58 (1985), 300–321.
CrossRef
MathSciNet
Google Scholar
M. Ismail, D. Stanton, and G. Viennot, The combinatorics of the q-Hermite polynomials and the Askey-Wilson integral, Eur. J. Comb. 8 (1987), 379–392.
MATH
MathSciNet
Google Scholar
I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, Oxford, 1995.
MATH
Google Scholar
___, Affine root systems and Dedekind’s η-function, Inv. Math. 15 (1972), 91–143.
Google Scholar
K. O’Hara, Unimodality of Gaussian coefficients: a constructive proof, J. Comb. A 53 (1990), 29–52.
MATH
CrossRef
MathSciNet
Google Scholar
I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche, reprinted in ‘I. Schur, Gesammelte Abhandlungen’, volume 2, Springer, Berlin, 1973, pp. 117–136.
Google Scholar
R. Simion and D. Stanton, Octabasic Laguerre polynomials and permutation statistics, J. Comput. Appl. Math. 68 (1996), 297–329.
MATH
CrossRef
MathSciNet
Google Scholar
R. Stanley, Enumerative Combinatorics, Wadsworth, Monterey, 1986.
Google Scholar
___, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Alg. Disc. Methods 1 (1980), 168–183.
Google Scholar
D. Stanton, Gaussian integrals and the Rogers-Ramanujan identities, in ‘Symbolic computation, number theory, special functions, physics, and combinatorics’ (F. Garvan and M. Ismail, eds.), Kluwer, Dordrecht, 2001, pp. 255–266.
Google Scholar
G. Viennot, Une Théorie Combinatoire des Polynômes Orthogonaux Généraux, Lecture Notes, University of Quebec at Montreal, 1983.
Google Scholar
D. Zeilberger, A one-line high school algebra proof of the unimodality of the Gaussian polynomials [n
k]for k 6lt; 20, in ‘q-Series and Partitions’, IMA Vol. Math. 18, Springer, New York, 1989, pp. 67–72.
Google Scholar
___, A q-Foata proof of the q-Saalschütz identity, Eur. J. Comb. 8 (1987), 461–463.
MATH
MathSciNet
Google Scholar
___, Proof of the alternating sign matrix conjecture, Elec. J. Comb. 3 (1996), 1–84.
Google Scholar
D. Zeilberger and D. Bressoud, A proof of Andrews’ q-Dyson conjecture, Disc. Math. 54 (1985), 201–224.
MATH
CrossRef
MathSciNet
Google Scholar