Skip to main content

3nj-Coefficients and Orthogonal Polynomials of Hypergeometric Type

  • Chapter
  • First Online:
Orthogonal Polynomials and Special Functions

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1817))

Abstract

We give a self-contained introduction to the theory of 3nj -coefficients of \( \mathfrak{s}\mathfrak{u} \)(2) and \( \mathfrak{s}\mathfrak{u} \)(1, 1), their hypergeometric expressions, and their relations to orthogonal polynomials. The 3nj -coefficients of \( \mathfrak{s}\mathfrak{u} \)(2) play a crucial role in various physical applications (dealing with the quantization of angular momentum), but here we shall deal with their mathematical importance only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.E. Andrews, R. Askey and R. Roy, Special functions. Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  2. R. Askey and J.A. Wilson, A set of orthogonal polynomials that generalize the Racah coefficients of 6-j symbols, SIAM J. Math. Anal. 10 (1979), 1008–1016.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Askey and J.A. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319.

    Google Scholar 

  4. W.N. Bailey, Generalized hypergeometric series. Cambridge University Press, Cambridge, 1935.

    MATH  Google Scholar 

  5. V. Bargmann, On the representations of the rotation group, Rev. Mod. Phys. 34 (1962), 829–845.

    Article  MATH  MathSciNet  Google Scholar 

  6. L.C. Biedenharn, An identity satisfied by the Racah coefficients, J. Math. Phys. 31 (1953), 287–293.

    MathSciNet  MATH  Google Scholar 

  7. L.C. Biedenharn and J.D. Louck, Angular momentum in quantum physics. Encyclopedia of mathematics and its applications, vol. 8. Addison-Wesley, Reading, 1981. The Racah-Wigner algebra in quantum theory. Encyclopedia of mathematics and its applications, vol. 9. Addison-Wesley, Reading, 1981.

    Google Scholar 

  8. L.C. Biedenharn and H. Van Dam, Quantum theory of angular momentum. Academic Press, New York, 1965.

    Google Scholar 

  9. N. Bourbaki, Groupes et algèbres de Lie. Chap. 1, 4–6, 7-8. Hermann, Paris, 1960, 1968, 1975.

    MATH  Google Scholar 

  10. J.P. Elliott, Theoretical studies in nuclear structure V: The matrix elements of non-central forces with an application to the 2p-shell, Proc. Roy. Soc. A218 (1953), 370.

    Google Scholar 

  11. P.G. Burke, A program to calculate a general recoupling coefficient, Comput. Phys. Commun. 1 (1970), 241–250.

    Article  Google Scholar 

  12. J.S. Carter, D.E. Flath and M. Saito, The classical and quantum 6j-symbols. Princeton University Press, Princeton, 1995.

    Google Scholar 

  13. C.F. Dunkl and Y. Xu, Orthogonal polynomials of several variables. Encyclopedia of mathematics and its applications, vol. 81. Cambridge Univ. Press, 2001.

    Google Scholar 

  14. V. Fack, S.N. Pitre and J. Van der Jeugt, New efficient programs to calculate general recoupling coefficients, I, Comput. Phys. Commun. 83 (1994), 275–292.

    Article  MATH  Google Scholar 

  15. V. Fack, S. Lievens and J. Van der Jeugt, On rotation distance between binary coupling trees and applications for 3nj-coefficients, Comput. Phys. Commun. 119 (1999), 99–114.

    Article  Google Scholar 

  16. V. Fack, S. Lievens and J. Van der Jeugt, On the diameter of the rotation graph of binary coupling trees, Discrete Mathematics 245 (2002), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y.I. Granovskiî and A.S. Zhedanov, New construction of 3nj-symbols, J. Phys. A: Math. Gen. 26 (1993), 4339–4344.

    Article  Google Scholar 

  18. W.J. Holman and L.C. Biedenharn, A general study of the Wigner coefficients of SU(1, 1), Ann. Physics 47 (1968), 205–231.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.E. Humphreys, Introduction to Lie algebras and representation theory. Springer Verlag, Berlin, 1972.

    MATH  Google Scholar 

  20. N.A. Jacobson, Lie algebras. Wiley, New York, 1962.

    MATH  Google Scholar 

  21. H.A. Jahn and J. Hope, Symmetry properties of the Wigner 9j symbol, Phys. Rev. 93 (1954), 318–321.

    Article  MATH  Google Scholar 

  22. J.C. Jantzen, Moduln mit einem höchsten Gewicht. Lecture Notes in Mathematics, 750. Springer, Berlin, 1979.

    MATH  Google Scholar 

  23. A.P. Jucys, I.B. Levinson and V.V. Vanagas, Mathematical apparatus of the theory of angular momentum. Russian edition, 1960. English translation: Israel program for scientific translations, Jerusalem, 1962.

    Google Scholar 

  24. S. Karlin and J.L. McGregor, The Hahn polynomials, formulas and an application, Scripta Math. 26 (1961), 33–46.

    MATH  MathSciNet  Google Scholar 

  25. R. Koekoek and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Report 98-17, Technical University Delft (1998); available at http://aw.twi.tudelft.nl/~koekoek/askey.html.

  26. H.T. Koelink and J. Van der Jeugt, Convolutions for orthogonal polynomials from Lie and quantum algebra representations, SIAM J. Math. Anal. 29 (1998), 794–822.

    Article  MATH  MathSciNet  Google Scholar 

  27. T.H. Koornwinder, Clebsch-Gordan coefficients for SU(2) and Hahn polynomials, Nieuw Archief voor Wiskunde (3), XXIX (1981), 140–155.

    MathSciNet  Google Scholar 

  28. G.I. Kuznetsov and Ya. Smorodinskiî, On the theory of 3nj coefficients, Soviet J. Nuclear Phys. 21 (1975), 585–588.

    MathSciNet  Google Scholar 

  29. S. Lievens and J. Van der Jeugt, 3nj-coefficients of su(1, 1) as connection coefficients between orthogonal polynomials in n variables, J. Math. Phys. 43 (2002), 3824–3849.

    Article  MATH  MathSciNet  Google Scholar 

  30. S.D. Majumdar, The Clebsch-Gordan coefficients, Prog. Theor. Phys. 20 (1958), 798–803.

    Article  MathSciNet  Google Scholar 

  31. J. von Neumann and E. Wigner, Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons, III, Z. Physik 51 (1928), 844–858.

    Article  Google Scholar 

  32. W. Pauli, Zur Quantenmechanik des magnetischen Elektrons, Z. Physik 43 (1927), 601–623.

    Article  Google Scholar 

  33. G. Racah, Theory of complex spectra. I, II, III and IV. Phys. Rev. 61 (1942), 186–197; 62 (1942), 438-462; 63 (1943), 367-382; 76 (1949), 1352-1365.

    Article  Google Scholar 

  34. W. Rasmussen, Identity of the SU(1, 1) and SU(2) Clebsch-Gordan coefficients coupling unitary discrete representations, J. Phys. A 8 (1975), 1038–1047.

    Article  MathSciNet  Google Scholar 

  35. K. Srinivasa Rao, T.S. Santhanam and K. Venkatesh, On the symmetries of the Racah coefficient, J. Math. Phys. 16 (1975), 1528–1530.

    Article  MATH  Google Scholar 

  36. K. Srinivasa Rao and V. Rajeswari, Quantum theory of angular momentum. Selected topics. Narosa/Springer, New Delhi, 1993.

    Google Scholar 

  37. T. Regge, Symmetry properties of Clebsch-Gordan’s coefficients, Nuovo Cimento 10 (1958), 544–545.

    Article  MATH  Google Scholar 

  38. T. Regge, Symmetry properties of Racah’s coefficients, Nuovo Cimento 11 (1959), 116–117.

    Article  Google Scholar 

  39. J. Repka, Tensor products of unitary representations of SL 2(R),Amer. J. Math. 100 (1978), 747–774.

    Article  MATH  MathSciNet  Google Scholar 

  40. H. Rosengren, Multilinear Hankel forms of higher order and orthogonal polynomials, Math. Scand. 82 (1998), 53–88. Multivariable orthogonal polynomials and coupling coefficients for discrete series representations, SIAM J. Math. Anal. 30 (1999), 232-272.

    MATH  MathSciNet  Google Scholar 

  41. J. Schwinger, On angular momentum, unpublished (1952); see [8]

    Google Scholar 

  42. J.-P. Serre, Lie algebras and Lie groups. W.A. Benjamin, New York, 1966.

    Google Scholar 

  43. L.J. Slater, Generalized hypergeometric functions. Cambridge Univ. Press, Cambridge, 1966.

    MATH  Google Scholar 

  44. Ya. Smorodinskiî and L.A. Shelepin, Clebsch-Gordan coefficients, viewed from different sides, Sov. Phys. Uspekhi 15 (1972), 1–24.

    Article  Google Scholar 

  45. Ya. Smorodinskiî and S.K. Suslov, The Clebsch-Gordan coefficients of the group SU(2) and Hahn polynomials, Soviet J. Nuclear Phys. 35 (1982), 192–201.

    Google Scholar 

  46. H. Ui, Clebsch-Gordan formulas of the SU(1, 1) group, Progr. Theoret. Phys. 44 (1970), 689–702.

    Article  MATH  MathSciNet  Google Scholar 

  47. J. Van der Jeugt, Coupling coefficients for Lie algebra representations and addition formulas for special functions, J. Math. Phys. 38 (1997), 2728–2740.

    Article  MATH  MathSciNet  Google Scholar 

  48. J. Van der Jeugt and K. Srinivasa Rao, Invariance groups of transformations of basic hypergeometric series, J. Math. Phys. 40 (1999), 6692–6700.

    Article  MATH  MathSciNet  Google Scholar 

  49. V.S. Varadarajan, Lie groups, Lie algebras, and their representations. Prentice-Hall, New York, 1974.

    MATH  Google Scholar 

  50. D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, Quantum theory of angular momentum. Nauka, Leningrad, 1975: in Russian. English Edition: World Scientific, Singapore, 1988.

    Google Scholar 

  51. N.Ja. Vilenkin and A.U. Klimyk, Representation of Lie groups and special functions, vols. 1, 2 and 3. Kluwer Academic Press, Dordrecht, 1991, 1992.

    MATH  Google Scholar 

  52. E.P. Wigner, On the matrices which reduce the Kronecker products of representations of S.R. groups, unpublished (1940); see [8].

    Google Scholar 

  53. E.P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspekren. Vieweg, Braunschweig, 1931. Group theory and its applications to the quantum mechanics of atomic spectra. Academic Press, New York, 1959.

    Google Scholar 

  54. J.A. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980), 690–701.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van der Jeugt, J. (2003). 3nj-Coefficients and Orthogonal Polynomials of Hypergeometric Type. In: Koelink, E., Van Assche, W. (eds) Orthogonal Polynomials and Special Functions. Lecture Notes in Mathematics, vol 1817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44945-0_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-44945-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40375-3

  • Online ISBN: 978-3-540-44945-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics