Skip to main content

Image Decomposition Application to SAR Images

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2695)


We construct an algorithm to split an image into a sum u + v of a bounded variation component and a component containing the textures and the noise. This decomposition is inspired from arecent work of Y. Meyer. We find this decomposition by minimizing a convex functional which depends on the two variables u and v, alternatively in each variable. Each minimization is based on a projection algorithm to minimize the total variation. We carry out the mathematical study of our method. We present some numerical results. In particular, we show how the u component can be used in nontextured SAR image restoration.


  • Total variation minimization
  • BV
  • texture
  • classification
  • restoration
  • SAR images
  • speckle

partially supported by the GdR-PRC ISIS

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. Alvarez, Y. Gousseau, J.M. Morel: Scales in Natural Images and a Consequence on their Bounded Variation Norm. Scale-Space’ 99, Lectures Notes in Computer Science, 1682, (1999).

    Google Scholar 

  2. L. Rudin, S. Osher, E. Fatemi: Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268, (1992)

    CrossRef  MATH  Google Scholar 

  3. Yves Meyer: Oscillating patterns in image processing and in some nonlinear evolution equations. The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures, (March 2001)

    Google Scholar 

  4. A. Chambolle, P.L. Lions: Image recovery via total variation minimization and related problems. Numerische Mathematik, 76,(3), 167–188, (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Luminita A. Vese, Stanley J. Osher: Modeling textures with total variation minimization and oscillating patterns in image processing. UCLA C.A.M. Report 02-19 (May 2002)

    Google Scholar 

  6. S.J. Osher, A. Sole, L.A. Vese: Image decomposition and restoration using total variation minimization and the H−1 norm. UCLA C.A.M. Report 02-57 (October 2002)

    Google Scholar 

  7. A. Chambolle: An algorithm for total variation minimization and applications. To appear in JMIV (2003).

    Google Scholar 

  8. I. Ekeland, R. Temam: Analyse convexe et problèmes variationnels. Dunod, Grundlehren der mathematischen Wissenschaften, second edition, 224, (1983)

    Google Scholar 

  9. Henderson Lewis: Principle and applications of imaging radar. J.Wiley and Sons, Manual of Remote Sensing, third edition, 2 (1998)

    Google Scholar 

  10. G. Franceschetti, R. Lanari: Synthetic aperture radar processing CRC press, Electronic engineering systems series, (1999)

    Google Scholar 

  11. J.F. Aujol, G. Aubert, L. Blanc-Féraud, A. Chambolle: Decomposing an image: Application to textured images and SAR images. Preprint (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aujol, JF., Aubert, G., Blanc-Féraud, L., Chambolle, A. (2003). Image Decomposition Application to SAR Images. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40368-5

  • Online ISBN: 978-3-540-44935-5

  • eBook Packages: Springer Book Archive