Skip to main content

On the Power of Interactive Computing

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1872)


In a number of recent studies the question has arisen whether the familiar Church-Turing thesis is still adequate to capture the powers and limitations of modern computational systems. In this presentation we review two developments that may lead to an extension of the classical Turing machine paradigm: interactiveness, and global computing.

This research was partially supported by GA ČR grant No. 201/98/0717 and by EC Contract IST-1999-14186 (Project ALCOM-FT).


  1. J.L. Balcázar, J. Diaz, and J. Gábarro. Structural complexity, Vol. I, 2nd edition, Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  2. L. Blum, F. Cucker, M. Shub and S. Smale. Complexity of real computation, Springer-Verlag, New York, NY, 1998.

    Google Scholar 

  3. L. Cardelli. Global computation, A CM Sigplan Notices 32-1 (1997) 66–68.

    CrossRef  Google Scholar 

  4. B.J. Copeland. The Church-Turing thesis, in:E.N. Zalta, Stanford Encyclopedia of Philosophy, Center for the Study of Language and Information (CSLI), Stanford University, Stanford, CA,, 1997.

    Google Scholar 

  5. I. Foster and C. Kesselman. The grid: blueprint for a new computing infrastructure, Morgan-Kaufmann Publ., San Francisco, 1998

    Google Scholar 

  6. D.Q. Goldin. Persistent Turing machines as a model of interactive computation, in: K-D. Schewe and B. Thalheim(Eds.), Foundations of Information and Knowledge Systems, Proc. First Int. Symposium (FoIKS 2000), Lecture Notes in Computer Science, vol. 1762, Springer-Verlag, Berlin, 2000, pp. 116–135.

    CrossRef  Google Scholar 

  7. R. Milner. A calculus of communicating systems, Lecture Notes in Computer Science, Vol. 92, Springer-Verlag, Berlin, 1980.

    MATH  Google Scholar 

  8. R. Milner. Elements of interaction, C.ACM36:1 (1993) 78–89.

    CrossRef  Google Scholar 

  9. A. Pnueli. Specification and development of reactive systems, in: H.-J. Kugler (Ed.), Information Processing 86, Proceedings IFIP 10th World Computer Congress, Elsevier Science Publishers (North-Holland), Amsterdam, 1986, pp. 845–858.

    Google Scholar 

  10. M. Prasse, P. Rittgen. Why Church’s Thesis still holds. Some notes on Peter Wegner’s tracts on interaction and computability, The Computer Journal 41 (1998) 357–362.

    MATH  CrossRef  Google Scholar 

  11. U. Schöning. Complexity theory and interaction, in: R. Herken(Ed.), The Universal Turing Machine-A Half-Century Survey, Oxford University Press, Oxford, 1988, pp. 561–580.

    Google Scholar 

  12. J.C. Shepherdson. Mechanisms for computing over arbitrary structures, in: R. Herken (Ed.), The Universal Turing Machine-A Half-Century Survey, Oxford University Press, Oxford, 1988, pp. 581–601.

    Google Scholar 

  13. H.T. Siegelmann. Computations beyond the Turing limit, Science 268 (1995) 545–548.

    CrossRef  Google Scholar 

  14. L. Staiger. ω-Languages, in: G. Rozenberg and A. Salomaa(Eds.), Handbook of Formal Languages, Vol. 3: Beyond Words, Chapter 6, Springer-Verlag, Berlin, 1997, pp. 339–387.

    Google Scholar 

  15. W. Thomas. Automata on infinite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Vol. B: Models and Semantics, Elsevier Science Publishers, Amsterdam, 1990, pp. 135–191.

    Google Scholar 

  16. B.A. Trakhtenbrot. Automata and their interaction: definitional suggestions, in: G. Ciobanu and G. Păun (Eds.), Fundamentals of Computation Theory, Proc. 12th International Symposium (FCT’99), Lecture Notes in Computer Science, Vol. 1684, Springer-Verlag, Berlin, 1999, pp. 54–89.

    Google Scholar 

  17. J. vanLeeuwen and J. Wiedermann. Breaking the Turing barrier: the case of the Internet, Techn. Rep. Institute of Computer Science, Academy of Sciences, Prague, 2000.

    Google Scholar 

  18. J. vanLeeuwen and J. Wiedermann. A computational model of interaction, Techn. Rep. Dept. of Computer Science, Utrecht University, Utrecht, 2000.

    Google Scholar 

  19. P. Wegner. Interactive foundations of object-based programming, IEEE Computer 28:10 (1995) 70–72.

    Google Scholar 

  20. P. Wegner. Interaction as a basis for empirical computer science, Comput. Surv. 27 (1995) 45–48.

    CrossRef  Google Scholar 

  21. P. Wegner. Why interaction is more powerful than algorithms, C ACM 40 (1997) 80–91.

    CrossRef  Google Scholar 

  22. P. Wegner. Interactive foundations of computing, Theor. Comp. Sci. 192 (1998) 315–351.

    MATH  CrossRef  MathSciNet  Google Scholar 

  23. P. Wegner, D. Goldin. Coinductive models of finite computing agents, in: B. Jacobs and J. Rutten (Eds.), CMCS’99-Coalgebraic Methods in Computer Science, TCS: Electronic Notes in Theoretical Computer Science, Vol. 19, Elsevier, 1999.

    Google Scholar 

  24. P. Wegner, D. Goldin. Interaction as a framework for modeling, in: P. Chen et al. (Eds.), Conceptual Modeling-Current Issues and Future Directions, Lecture Notes in Computer Science, Vol. 1565, Springer-Verlag, Berlin, 1999, pp 243–257.

    Google Scholar 

  25. P. Wegner, D.Q. Goldin. Interaction, comput ability, and Church’s thesis, The Computer Journal 1999 (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Leeuwen, J., Wiedermann, J. (2000). On the Power of Interactive Computing. In: van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds) Theoretical Computer Science: Exploring New Frontiers of Theoretical Informatics. TCS 2000. Lecture Notes in Computer Science, vol 1872. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67823-6

  • Online ISBN: 978-3-540-44929-4

  • eBook Packages: Springer Book Archive