Advertisement

Emergence and separation of the lumps in the p-spin interaction model

Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1816)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [A-L-R]
    M. Aizenman, J.L. Lebowitz, D. Ruelle, Some rigorous results on the Sherrington-Kirkpatrick model, Coramun. Math. Phys., 112 (1987) 3–20.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [B-P]
    A. Bovier. P. Picco (editors), Mathematical Aspects of Spin Glasses and Neural Networks, Progress in Probability, Vol. 41, Birkhauser, Boston, 1997.Google Scholar
  3. [C]
    F. Comets, A spherical bound for the Sherrington-Kirkpatrick model, Hommage à P.-A. Meyer et J. Neveu, Astensque, 236, (1996) 103–108.MathSciNetGoogle Scholar
  4. [C-N]
    F. Comets, J. Neveu, The Sherrington-Kirkpatrick model of spin glasses and stochastic calculus: the high temperature case, Comm. Math. Phys., 166, 3 (1995) 549–564.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [D]
    B. Derrida, Random energy model: An exactly solvable model of disordered systems, Phys. Rev. B, 24, #5 (1981) 2613–2626.CrossRefMathSciNetGoogle Scholar
  6. [F-Z]
    J. Frohlich, B. Zegarlinski, Some comments on the Sherrington-Kirkpatrick model of spin glasses, Coramun. Math. Phys., 112 (1987) 553–566.CrossRefMathSciNetGoogle Scholar
  7. [G]
    E. Gardner. Spin glasses with p-spin interactions, Nuclear Phys. B, 257, #6 (1985) 747–765.CrossRefMathSciNetGoogle Scholar
  8. [G-G]
    S. Ghirlanda, F. Gucrra, General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametiicity, J. Phys. A, 31, #46 (1998) 9149–9155.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [I-S-T]
    I.A. Ibragimov, V. Sudakov, B.S. Tsirelson, Norms of Gaussian sample functions, “Proceedings of the Third Japan-USSR Symposium on Probability”, Tashkent, 1975, Lecture Notes in Math., 550, Springer Verlag, Berlin, 1976, 20–41.Google Scholar
  10. [K]
    J.-P. Kahane, Une inegalite du type de Slepian et Gordon sur les processus gaussiens, Israel J. Math., 55, 1 (1986) 109–110.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [K-T-J]
    J. Kosterlitz, D. Thouless, R. Jones, Spherical model of spin glass, Phys. Rev. Lett, 36 (1976) 1217–1220.CrossRefGoogle Scholar
  12. [M-P-V]
    M. Mezard, G. Parisi, M. Virasoro, Spin glass Theory and beyond, World Scientific, Singapore, 1987.zbMATHGoogle Scholar
  13. [P]
    G. Parisi, Field Theory, Disorder, Simulation, World Scientific Lecture Notes in Physics 45, World Scientific, Singapore, 1992.Google Scholar
  14. [Pi]
    G. Pisier, Probabilistic methods in the geometry of Banach Spaces, Probability and analysis, Varenna 1985, Springer Verlag Lecture Notes in Math. n° 1206 (1996) 167–241.Google Scholar
  15. [P-Y]
    J. Pitman, M. Yor, The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator, Ann. Probab., 25 (1997) 855–900.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [Sh]
    M. Shcherbina, On the replica-symmetric solution of the Sherrington-Kirkpatrick model, Helv. Phys. Ada, 70 (1997) 838–853.zbMATHMathSciNetGoogle Scholar
  17. [S-K]
    D. Sherrington, S. Kirkpatrick, Solvable model of spin glass, Phys. Rev. Lett., 35 (1972) 1792–1796.CrossRefGoogle Scholar
  18. [Tl]
    M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Publ. Math. I.H.E.S., 81 (1995) 73–205.zbMATHMathSciNetGoogle Scholar
  19. [T2]
    —, The Sherrington-Kirkpatrick model: a challenge to mathematicians, Probab. Theory Related Fields, 110 (1998) 109–176.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [T3]
    —, Rigorous low temperature results for the p-spin interaction model, Probab. Theory Related Fields, 117 (2000) 303–360.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [T4]
    —, Exponential inequalities and replica-symmetry breaking for the Sherrington-Kirkpatrick model, Ann. Probab., 28 (2000) 1018–1062.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [T5]
    —, Huge random structures and mean field models for spin glasses, in “Proceedings of the International Congress of Mathematicians, Vol. I (Berlin 1998)“, Documenta Math., Extra Vol. I (1998) 507–536.Google Scholar
  23. [T6]
    —, Verres de spin et optimisation combinatoire, Séminaire Bourbaki, March 1999,Asterisque, 266 (2000) Exp. n° 859, 287–317.Google Scholar
  24. [T7]
    —, Self organization in a spin glass model, in preparation.Google Scholar
  25. [T8]
    —, On the high temperature region of the Sherrington-Kirkpatrick model, Ann. Probab., to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Personalised recommendations