Some Applications of the Fundamental Theorem of Asset Pricing

Part of the Lecture Notes in Mathematics book series (LNM, volume 1816)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AS 94]
    J.P. Ansel, C. Strieker, (1994), Couverture des actifs contingents et prix maximum. Ann. Inst. Henri Poincaré, Vol. 30, pp. 303–315.zbMATHGoogle Scholar
  2. [BOO]
    L. Bachelier, (1900), Théorie de la Speculation. Ann. Sci. Ecole Norm. Sup., Vol. 17, pp. 21–86, [English translation in: The Random Character of stock prices (P. Cotner, editor), MIT Press, 1964].Google Scholar
  3. [B32]
    S. Banach, (1932), Théorie des operations linéaires. Monogr. Mat., Warszawa 1. Reprint by Chelsea Scientific Books.Google Scholar
  4. [BS73]
    F. Black, M. Scholes, (1973), The pricing of options and corporate liabilities. Journal of Political Economy, Vol. 81, pp. 637–659.CrossRefGoogle Scholar
  5. [CK00]
    J.-M. Courtault, Y. Kabanov, B. Bru, P. Crepel, I. Lebon, A. Le Marchand, (2000), Louis Bachelier: On the Centenary of “Theorie de la Speculation”. Mathematical Finance, Vol. 10, No. 3, pp. 341–353.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [CRR79]
    J. Cox, S. Ross, M. Rubinstein, (1979), Option pricing: a simplified ap-proch. Journal of Financial Economics, Vol. 7, pp. 229–263.CrossRefzbMATHGoogle Scholar
  7. [D92]
    F. Delbaen, (1992), Representing martingale measures when asset prices are continuous and bounded. Mathematical Finance, Vol. 2, pp. 107–130.zbMATHCrossRefGoogle Scholar
  8. [DS94]
    F. Delbaen, W. Schachermayer, (1994), A General Version of the Fundamental Theorem of Asset Pricing. Math. Annalen, Vol. 300, pp. 463–520.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [DS94a]
    F. Delbaen, Schachermayer, W. (1994) Arbitrage and free lunch with bounded risk for unbounded continuous processes. Mathematical Finance, Vol. 4, pp. 343–348.zbMATHCrossRefGoogle Scholar
  10. [DS95]
    F. Delbaen, W. Schachermayer, (1995), The No-Arbitrage Property under a change of numéraire. Stochastics and Stochastic Reports, Vol. 53, pp. 213–226.zbMATHMathSciNetGoogle Scholar
  11. [DS98]
    F. Delbaen, W. Schachermayer, (1998), The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes. Mathematische Annalen, Vol. 312, pp. 215–250.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [DS99]
    F. Delbaen, W. Schachermayer, (1999), A Compactness Principle for Bounded Sequences of Martingales with Applications. Proceedings of the Seminar of Stochastic Analysis, Random Fields and Applications, Progress in Probability, Vol. 45, pp. 137–173.MathSciNetGoogle Scholar
  13. [E80]
    M. Emery, (1980), Compensation de processus à variation finie non locale-ment intégrables. Séminaire de Probabilités XIV, Springer Lecture Notes in Mathematics, Vol. 784, pp. 152–160.Google Scholar
  14. [FK98]
    H. Föllmer, Yu.M. Kabanov, (1998), Optional decomposition and Lagrange multiplievs. Finance and Stochastics, Vol. 2, pp. 69–81.zbMATHMathSciNetGoogle Scholar
  15. [H99]
    J. Hull, (1999), Options, Futures, and Other Derivatives. 4th Edition, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  16. [HK79]
    J.M. Harrison, D.M. Kreps, (1979), Martingales and arbitrage in multi-period securities markets. J. Econ. Theory, Vol. 20, pp. 381–408.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [HP81]
    J.M Harrison, S.R. Pliska, (1981), Martingales and Stochastic intefrals in the theory of continuous trading. Stoch. Proc. & Appl., Vol. 11, pp. 215–260.zbMATHMathSciNetGoogle Scholar
  18. [J92]
    S.D. Jacka, (1992), A martingale representation result and an application to incomplete financial markets. Mathematical Finance, Vol. 2, pp. 239–250.zbMATHCrossRefGoogle Scholar
  19. [K81]
    D.M. Kreps, (1981), Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ., Vol. 8, pp. 15–35.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [K96]
    D. Kramkov, (1996), Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Probability Theory and Related Fields, Vol. 105, pp. 459–479.zbMATHMathSciNetCrossRefGoogle Scholar
  21. [KQ 95]
    N. El Karoui, M.-C. Quenez, (1995), Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim., Vol. 33, pp. 29–66.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [LL96]
    D. Lamberton, B. Lapeyre, (1996), Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall, London.Google Scholar
  23. [M73]
    R.C. Merton, (1973), Theory of rational option pricing. Bell J. Econom. Manag. Sci., Vol. 4, pp. 141–183.CrossRefMathSciNetGoogle Scholar
  24. [M 80]
    J. Memin, (1980), Espaces de semi-martingales et changement de probebilité. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, Vol. 52, pp. 9–39.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [P 90]
    Protter, P. (1990) Stochastic Integration and Differential Equations. Applications of Mathematics, Vol. 21, Springer, Berlin, Heidelberg, New York.Google Scholar
  26. [RY91]
    D. Revuz, M. Yor, (1991), Continuous Martingales and Brownian Motion. Springer, Berlin, Heidelberg, New York.zbMATHGoogle Scholar
  27. [S65]
    P.A. Samuelson, (1965), Proof that properly anticipated prices fluctuate randomly. Industrial Management Review, Vol. 6, pp. 41–50.Google Scholar
  28. [S90]
    C. Strieker, (1990), Arbitrage et lois de martingale. Ann. Inst. H.Poincare Probab. Statist., Vol. 26, pp. 451–460.MathSciNetGoogle Scholar
  29. [S94]
    W. Schachermayer, (1994), Martingale Measures for discrete time processes with infinite horizon. Math. Finance, Vol. 4, No. 1, pp. 25–55.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [SOI]
    W. Schachermayer, (2001), Optimal Investment in Incomplete Financial Markets. Mathematical Finance: Bachelier Congress 2000 (H. Geman, D. Madan, St.R. Pliska, T. Vorst, editors), Springer, pp. 427–462.Google Scholar
  31. [Sch66]
    H.H. Schafer, (1966), Topological Vector Spaces. Graduate Texts in Mathematics.Google Scholar
  32. [Sh99]
    A.N. Shiryaev, (1999), Essentials of Stochastic Finance. Facts, Models, Theory. World Scientific.Google Scholar
  33. [TOO]
    M.S. Taqqu, (2000), Bachelier and his Times: A Conversation with Bernard Bru. Finance & Stochastics, Vol. 5, Issue 1.Google Scholar
  34. [W91]
    D. Williams, (1991), Probability with Martingales. Cambridge University Press.Google Scholar
  35. [Y80]
    J.A. Yan, (1980), Caracterisation d’ une classe d’ensembles convexes de L 1 ou H1. Lect. Notes Mathematics, Vol. 784, pp. 220–222.Google Scholar
  36. [Y78]
    M. Yor, (1978), Sous-espaces denses dans L 1 ou H1. Lect. Notes Mathematics, Vol. 649, pp. 265–309.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Personalised recommendations