Congestion Control in a Reliable Scalable Message-Oriented Middleware

  • Peter R. Pietzuch
  • Sumeer Bhola
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2672)


This paper presents congestion control mechanisms for reliable and scalable message-oriented middleware following the publish/ subscribe communication model. We identify the key requirements of congestion control in this environment, how it differs from congestion control for the Internet, and propose a combination of two congestion control mechanisms, (1) driven by a publisher hosting broker (PDCC), (2) driven by a subscriber hosting broker (SDCC). SDCC decouples the notion of a receive window and a NACK window, and is used by subscriber hosting brokers in recovery mode. PDCC implements a scalable and low latency feedback loop between a publisher hosting broker and all subscriber hosting brokers, which is used to adjust the rate of publishing new messages, to allow brokers in recovery to eventually catch up, and other brokers to keep up. We present a detailed experimental evaluation of our implementation of these mechanisms in the Gryphon system by injecting network failures and link congestion.


Congestion Control Overlay Network Multicast Tree Link Failure Publication Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McCanne, S., Jacobson, V., Vetterli, M.: Receiver-driven Layered Multicast. In: Proc. of ACM SIGCOMM. Volume 26,4. (1996) 117–130CrossRefGoogle Scholar
  2. 2.
    Rizzo, L.: pgmcc: A TCP-Friendly Single-Rate Multicast Congestion Control Scheme. In: Proc. of ACM SIGCOMM, Stockholm, Sweden (2000)Google Scholar
  3. 3.
    Thapliyal, P., Li, S., Kalyanaraman, S.: LE-SBCC: Loss-Event Oriented Sourcebased Multicast Congestion Control. Technical report, RPI-ECSE (2001)Google Scholar
  4. 4.
    Bhola, S., Strom, R., Bagchi, S., Zhao, Y., Auerbach, J.: Exactly-once Delivery in a Content-based Publish-Subscribe System. In: Proc. of the Int. Conf. on Dependable Systems and Networks (DSN’2002). (2002) 7–16Google Scholar
  5. 5.
    Brakmo, L.S., O’Malley, S.W., Peterson, L.L.: TCP Vegas: New Techniques for Congestion Detection and Avoidance. In: Proc. of ACM SIGCOMM. (1994)Google Scholar
  6. 6.
    Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R.E., Sturman, D.C.: An Efficient Multicast Protocol for Content-based Publish-Subscribe Systems. In: Proc. of the 19th IEEE Int. Conf. on Distributed Computing Systems, 1999. (1999) 262–272Google Scholar
  7. 7.
    Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.: Matching Events in a Content-based Subscription System. In: Proc. of the Principles of Distributed Computing, 1999. (1999) 53–61Google Scholar
  8. 8.
    Sun: Java™ Message Service. In: (2001)
  9. 9.
    Hasegawa, G., Murata, M., Miyahara, H.: Fairness and Stability of Congestion Control Mechanisms of TCP. In: Proc. of INFOCOM’99. (1999)Google Scholar
  10. 10.
    Jacobson, V., Karels, M.J.: Congestion Avoidance and Control. In: Proc. of ACM SIGCOMM. (1988) 314–332Google Scholar
  11. 11.
    Floyd, S., Fall, K.: Promoting the Use of End-to-end Congestion Control in the Internet. IEEE/ACM Trans. on Networking 7 (1999) 458–472CrossRefGoogle Scholar
  12. 12.
    Golestani, S.J., Sabnani, K.K.: Fundamental Observations on Multicast Congestion Control in the Internet. In: INFOCOM (2). (1999) 990–1000Google Scholar
  13. 13.
    DeLucia, D., Obraczka, K.: Multicast Feedback Suppression Using Representatives. In: INFOCOM (2). (1997) 463–470CrossRefGoogle Scholar
  14. 14.
    Yang, Y.R., Lam, S.S.: Internet Multicast Congestion Control: A Survey. In: Proc. of ICT, Acapulco, Mexico (2000)Google Scholar
  15. 15.
    Shi, S., Waldvogel, M.: A Rate-based End-to-end Multicast Congestion Control Protocol. In: Proc. of 5th IEEE Symposium on Comp. and Comm. (ISCC). (2000)Google Scholar
  16. 16.
    Sathaye, S.: ATM Forum Traffic Management Specification 4.0. ATM Forum af-tm-0056.000 (1996)Google Scholar
  17. 17.
    Roberts, L.: Rate-based Algorithm for Point to Multipoint ABR Service. ATM Forum Contribution 94-0772R1 (1994)Google Scholar
  18. 18.
    Fahmy, S., Jain, R., Goyal, R., et al.: Feedback Consolidation Algorithms for ABR Point-to-Multipoint Connections in ATM Networks. In: Proc. of IEEE INFOCOM. Volume 3. (1998) 1004–1013Google Scholar
  19. 19.
    Zhang, X., Shin, K.G., Saha, D., Kandlur, D.D.: Scalable Flow Control for Multicast ABR Services in ATM Networks. IEEE/ACM Trans. on Netw. 10 (2002)Google Scholar
  20. 20.
    Chawathe, Y., McCanne, S., Brewer, E.A.: RMX: Reliable Multicast for Heterogeneous Networks. In: INFOCOM, Tel Aviv, Israel, IEEE (2000) 795–804Google Scholar
  21. 21.
    Amir, Y., Awerbuch, B., Danilov, C., et al.: Global Flow Control for Wide Area Overlay Networks: A Cost-Benefit Approach. In: OpenArch’02. (2002) 155–166Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2003

Authors and Affiliations

  • Peter R. Pietzuch
    • 1
  • Sumeer Bhola
    • 2
  1. 1.University of Cambridge Computer LaboratoryCambridgeUK
  2. 2.IBM T.J. Watson Research CenterHawthorneUSA

Personalised recommendations