Skip to main content

Automatic Registration of MR First-Pass Myocardial Perfusion Images

  • Conference paper
  • First Online:

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2674)

Abstract

Magnetic resonance perfusion imaging has become a technique of choice in the evaluation of patients with suspected coronary artery disease (CAD). In order to improve the quantification of perfusion parameters (such as signal intensity amplitude and upslope), an automatic registration technique is proposed. The results are compared to manually registered perfusion sequences. Perfusion maps computed from original and registered data sets are also compared. Automatic registration can be efficiently used as a post-processing technique to improve further qualitative and quantitative evaluation strategies.

Keywords

  • Mutual Information
  • Perfusion Parameter
  • Registration Algorithm
  • Registration Technique
  • Dynamic Sequence

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-44883-7_22
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-44883-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwitter J., Nanz D., Kneifel S., Bertschinger K., Buchi M., Knusel P. R., Marincek B., Luscher T. F., von Schulthess G. K.: Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103(18) 2001 2230–2235

    Google Scholar 

  2. Bertschinger KM., Nanz D., Buechi M., Luescher TF., Marincek B., von Schulthess GK., Schwitter J.: Magnetic resonance myocardial first-pass perfusion imaging: parameter optimization for signal response and cardiac coverage. Magn Reson Imaging 14(5) 2001

    Google Scholar 

  3. Al-Saadi N., Nagel E., Gross M., Bornstedt A., Schnackenburg B., Klein C., Klimek W., Oswald H., Fleck E.: Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101(12) 2000 1379–1383

    Google Scholar 

  4. Plein S., Ridgway J. P., Jones T. R., Bloomer T. N., Sivananthan MU.: Coronary artery disease: assessment with a comprehensive MR imaging protocol—initial results. Radiology 225(1) 2002 300–307

    CrossRef  Google Scholar 

  5. ITK, National Library of Medicine Insight Segmentation and Registration Toolkit http://www.itk.org

  6. Wells W. M. 3rd, Viola P., Atsumi H., Nakajima S., Kikinis R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1) 1996 35–51.

    CrossRef  Google Scholar 

  7. Viola P.: Alignment by Maximization of Mutual Information. PhD thesis, Massachusetts Institute of Technology 1995

    Google Scholar 

  8. Viola P. and Wells III W.: Alignment by Maximization of Mutual Information. International Journal of Computer Vision 24(2) 1997 137–154

    CrossRef  Google Scholar 

  9. Bidaut L. M., Vallee J. P.: Automated registration of dynamic MR images for the quantification of myocardial perfusion. J. Magn. Reson. Imaging 13(4) 2001 648–655

    CrossRef  Google Scholar 

  10. Delzescaux T., Frouin F., De Cesare A., Philipp-Foliguet S., Zeboudj R., Janier M., Todd-Pokropek A., and Herment A.: Adaptive and self-evaluating registration method for myocardial perfusion assessment. Magma 13 2001 28–39

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bracoud, L., Vincent, F., Pachai, C., Canet, E., Croisille, P., Revel, D. (2003). Automatic Registration of MR First-Pass Myocardial Perfusion Images. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2003. Lecture Notes in Computer Science, vol 2674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44883-7_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44883-7_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40262-6

  • Online ISBN: 978-3-540-44883-9

  • eBook Packages: Springer Book Archive

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.