On-Line Stream Merging, Max Span, and Min Coverage

  • Wun-Tat Chan
  • Tak-Wah Lam
  • Hing-Fung Ting
  • Prudence W. H. Wong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2653)

Abstract

This paper introduces the notions of span and coverage for analyzing the performance of on-line algorithms for stream merging. We show that these two notions can solely determine the competitive ratio of any such algorithm. Furthermore, we devise a simple greedy algorithm that can attain the ideal span and coverage, thus giving a better performance guarantee than existing algorithms with respect to either the maximum bandwidth or the total bandwidth. The new notions also allow us to obtain a tighter analysis of existing algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. C. Aggarwal, J. L. Wolf, and P. S. Yu. On optimal piggyback merging policies for video-on-demand systems. In Proc. ACM Sigmetrics, pages 200–209, 1996.Google Scholar
  2. 2.
    A. Bar-Noy, J. Goshi, R. E. Ladner, and K. Tam. Comparison of stream merging algorithms for media-on-demand. In Proc. Conf. on Multi. Comput. and Net. (MMCN), pages 115–129, 2002.Google Scholar
  3. 3.
    A. Bar-Noy and R. E. Ladner. Competitive on-line stream merging algorithms for media-on-demand. In Proc. 12th ACM-SIAM SODA, pages 364–373, 2001.Google Scholar
  4. 4.
    Y. Cai, K. A. Hua, and K. Vu. Optimizing patching performance. In Proc. Conf. on Multi. Comput. and Net. (MMCN), pages 204–215, 1999.Google Scholar
  5. 5.
    S. W. Carter and D. D. E. Long. Improving bandwidth efficiency of video-on-demand. Computer Networks, 31(1–2):99–111, 1999.Google Scholar
  6. 6.
    W. T. Chan, T. W. Lam, H. F. Ting, and W. H. Wong. Competitive analysis of on-line stream merging algorithms. In Proc. 27th MFCS, pages 188–200, 2002.Google Scholar
  7. 7.
    W. T. Chan, T. W. Lam, H. F. Ting, and W. H. Wong. A unified analysis of hot video schedulers. In Proc. 34th ACM STOC, pages 179–188, 2002.Google Scholar
  8. 8.
    W. T. Chan, T. W. Lam, H. F. Ting, and W. H. Wong. On-line stream merging in a general setting. Theoretical Computer Science, 296(1):27–46, 2003.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    E. Coffman, P. Jelenkovic, and P. Momcilovic. The dyadic stream merging algorithm. Journal of Algorithms, 43(1), 2002.Google Scholar
  10. 10.
    D. Eager, M. Vernon, and J. Zahorjan. Bandwidth skimming: A technique for coste effective video-on-demand. In Proc. Conf. on Multi. Comput. and Net. (MMCN), pages 206–215, 2000.Google Scholar
  11. 11.
    D. Eager, M. Vernon, and J. Zahorjan. Minimizing bandwidth requirements for on-demand data delivery. IEEE Tran. on K. and Data Eng., 13(5):742–757, 2001.CrossRefGoogle Scholar
  12. 12.
    L. Golubchik, J. C. S. Lui, and R. R. Muntz. Adaptive piggybacking: A novel technique for data sharing in video-on-demand storage servers. ACM J. of Multi. Sys., 4(3):140–155, 1996.CrossRefGoogle Scholar
  13. 13.
    K. A. Hua, Y. Cai, and S. Sheu. Patching: A multicast technique for true video-on-demand services. In Proc. 6th ACM Multimedia, pages 191–200, 1998.Google Scholar
  14. 14.
    S. W. Lau, J. C. S. Lui, and L. Golubchik. Merging video streams in a multimedia storage server: Complexity and heuristics. ACM J. of Multi. Sys., 6(1):29–42, 1998.CrossRefGoogle Scholar
  15. 15.
    S. Sen, L. Gao, J. Rexford, and D. Towsley. Optimal patching schemes for efficient multimedia streaming. In Proc. 9th Int. W. on Net. and OS Support for Digital Audio and Video, pages 44–55, 1999.Google Scholar
  16. 16.
    P. W. H. Wong. On-line Scheduling of Video Streams. PhD thesis, The University of Hong Kong.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wun-Tat Chan
    • 1
  • Tak-Wah Lam
    • 2
  • Hing-Fung Ting
    • 2
  • Prudence W. H. Wong
    • 2
  1. 1.Department of ComputingHong Kong Polytechnic UniversityHong Kong
  2. 2.Department of Computer ScienceUniversity of Hong KongHong Kong

Personalised recommendations