Fusion Approaches for Mappings between Heterogeneous Ontologies

  • Thomas Mandl
  • Christa Womser-Hacker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2163)

Abstract

Ordering principles of digital libraries expressed in ontologies may be highly heterogeneous even within a domain and especially over different cultures. Automatic methods for mappings between different ontologies are necessary to ensure successful retrieval of information stored in virtual digital libraries. Text categorization has discussed learning methods to map between full text terms and thesaurus descriptors. This article reports some experiments for the mapping between different ontologies and shows further that fusion methods which have been successfully applied to ad-hoc information retrieval can also be employed for text categorization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aas, K, Eikvil, L. (1999): Text Categorization: a Survey. Report No. 941, June, 1999 Norwegian Computing Center. http://citeseer.nj.nec.com/aas99text.html
  2. 2.
    Bartell, B, Cottrell, G, Belew, R (1994): Automatic Combination of Multiple Retrieval Systems. In 17th Annual Intl ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’ 94).Google Scholar
  3. 3.
    Berry, M, Dumais, S., Letsche, T. (1995): Computational Methods for Intelligent Information Access. In ACM Supercomputing’ 95. San Diego, CA. pp. 1–38.Google Scholar
  4. 4.
    Chen, H. (1995): Machine Learning for Information Rerieval: Neural Networks, Symbolic Learning, and Genetic Algorithms. In Journal of the American Society for Information Science. JASIS 46(3). pp. 194–216.CrossRefGoogle Scholar
  5. 5.
    Crestani, F., Rijsbergen, K. van (1997): A Model for Adaptive Information Retrieval. In Journal of Intelligent Information Systems 8(1). S. 29–56.CrossRefGoogle Scholar
  6. 6.
    Drucker, H., Wu, D., Vapnik, V. (1999): Support Vector Machines for Spam Categorization. In IEEE Trans. on Neural Networks, vol 10(5). pp. 1048–1054.CrossRefGoogle Scholar
  7. 7.
    Fox, E., Shaw, J (1994): Combination of Multiple Searches. In Harman, D. (ed.): The Second Text Retrieval Conference. NIST Special Publication 500–215.Google Scholar
  8. 8.
    Goller, C., Löning, J., Will, T., Wolff, W. (2000): Automatic Document Classification: A thorough Evaluation of Various Methods. In Knorz, G., Kuhlen, R. (eds.): Informationskompetenz-Basiskompetenz in der Informationsgesellschaft. Proceedings 7. Intl Symposium für Informationswissenschaft. (ISI 2000) pp. 145–162.Google Scholar
  9. 9.
    Hartung, J. (1984): Lehr-und Handbuch der angewandten Statistik. München, Wien.Google Scholar
  10. 10.
    Haykin, S. (1999): Neural Networks: A Comprehensive Foundation.Google Scholar
  11. 11.
    Joachims, T. (1998): Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In European Conference on Machine Learning (ECML). pp. 137–142.Google Scholar
  12. 12.
    Kluck, M., Krause, J., Müller, M., Schmiede, R., Wenzel, H., Winkler, S., Meier, W. (2000): Virtuelle Fachbibliothek Sozialwissenschaften. IZ technical report 19, Informationszentrum Sozialwissenschaften, Bonn. http://www.bonn.iz-soz.de/publications/series/working-papers
  13. 13.
    Iyer, R., Lewis, D., Schapire, R., Singer, Y., Singhal, A. (2000): Boosting for Document Routing. In Ninth ACM Conference on Information and Knowledge Management (CIKM).Google Scholar
  14. 14.
    Lee, J. H. (1995): Combining Multiple Evidence from Different Properties of Weighting Schemes. In: 18th Annual Intl ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 95). pp. 180–188.Google Scholar
  15. 15.
    Lee, J., Dubin, D. (1999): Context-Sensitive Mapping with a Spreading Activation Network. In 22nd Annual Intl ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’ 99). pp. 198–205.Google Scholar
  16. 16.
    Mandl, T. (1998): Vague Transformations in Information Retrieval. In Zimmermann, H., Schramm, V. (Eds.): Knowledge Management und Kommunikationssysteme: Workflow Management, Multimedia, Knowledge Transfer. 6. Intl Symposium für Informationswissenschaft. (ISI’ 98). pp. 312–325.Google Scholar
  17. 17.
    McCabe, M. Catherine, Chowdhury, A., Grossmann, D., Frieder, O. (1999): A Unified Framework for Fusion of Information Retrieval Appproaches. In Eigth ACM Conference on Information and Knowledge Management (CIKM). pp. 330–334.Google Scholar
  18. 18.
    Mooney, R., Roy, L. (2000): Content Based Book Recommending Using Learning for Text Categorization. In Fifth ACM Conference on Digital Libraries.Google Scholar
  19. 19.
    Peters, C. (ed.) (2001): Cross-Language Information Retrieval and Evaluation: Proceedings of the CLEF 2000 Workshop. Springer [LNCS 2069]Google Scholar
  20. 20.
    Sheridan, P., Ballerini, J.P. (1996): Experiments in Multilingual Information Retrieval using the SPIDER System. In 19th Annual Intl ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’ 96). pp. 58–65.Google Scholar
  21. 21.
    Vogt, C., Cottrell, G.(1998): Predicting the Performance of Linearly Combined IR Systems. In 21th Annual Intl ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’ 98). pp. 190–196.Google Scholar
  22. 22.
    Voorhees, E., Gupta, N., Johnon-Laird, B. (1995): Learning Collection Fusion Strategies. In 18th Annual Intl ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’ 95). pp. 172–179.Google Scholar
  23. 23.
    Witten, I., Frank, E. (2000): Data Mining: Practical Machine Learning Tools and Techniques with JAVA Implementations.Google Scholar
  24. 24.
    Womser-Hacker, C. (1997): Das MIMOR-Modell. Mehrfachindexierung zur dynamischen Methoden-Objekt-Relationierung im Information Retrieval. Habilitationsschrift. Universität Regensburg, Informationswissenschaft.Google Scholar
  25. 25.
    Womser-Hacker, C., Mandl, T. (1999): Adapting Meta Information Retrieval to User Preferences and Document Features. In Bullinger, H-J., Ziegler, J. (eds.): Human-Computer Interaction: Communication, Cooperation and Application Design. HCI International’ 99, Munich, Germany, 22–27. August 1999. pp. 604–608.Google Scholar
  26. 26.
    Womser-Hacker, C., Mandl, T. (2000): Ein adaptives Information Retrieval Modell für Digitale Bibliotheken. In Knorz, G., Kuhlen, R. (eds.): Informationskompetenz-Basiskompetenz in der Informationsgesellschaft. Proceedings 7. Intl Symposium für Informationswissenschaft. (ISI 2000) pp. 1–16.Google Scholar
  27. 27.
    Yang, Y., Liu, X. (1999): A re-examination of text categorization methods. In 22nd Intl ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 42–49.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Thomas Mandl
    • 1
  • Christa Womser-Hacker
    • 1
  1. 1.Information ScienceUniversity of HildesheimHildesheimGermany

Personalised recommendations